US009235899B1

a2 United States Patent 10) Patent No.: US 9,235,899 B1
Kirmani et al. (45) Date of Patent: Jan. 12, 2016
(54) SIMULATING AN INFRARED EMITTER 8,165,146 Bl 4/2012 Melick et al.
ARRAY IN A VIDEO MONITORING CAMERA Sooroiez 145 B2 ggg P golljdénft lal
abal €t al.
TO CONSTRUCT A LOOKUP TABLE FOR 20020186317 Al 122002 Kayanuma
DEPTH DETERMINATION 2003/0193409 Al 10/2003 Crank
2004/0211868 Al 10/2004 Holmes et al.
(71) Applicant: GOOGLE INC., Mountain View, CA 2005/0149213 A1 7/2005 Guzaketal.
(Us) 2005/0151042 Al 7/2005 Watson
2005/0230583 Al 10/2005 Wu
. . . 2006/0109375 Al 5/2006 Ho et al.
(72) Inventors: G.hulam Ahmed Kirmani, Mountain 5006/0109613 Al 5/2006 C}(; ;1 a
View, CA (US); Andrea Colaco, 2006/0282866 Al 12/2006 Kuo
Mountain View, CA (US); Dongeek 2007/0001087 Al 1/2007 Shyu et al.
Shin, Cambridge, MA (US) 2007/0083791 Al 4/2007 Panesar et al.
2007/0222888 Al 9/2007 Ziao et al.
H . : . 2008/0186150 Al 8/2008 Kao
(73) Assignee: GOOGLE INC., Mountain View, CA 2008/0189352 Al 82008 Mitchell of al.
(Us) 2008/0291260 Al 11/2008 Dignan et al.
2009/0027570 Al 1/2009 Fujinawa
(*) Notice: Subject to any disclaimer, the term of this 2009/0102715 Al 4/2009 Louetal.
patent is extended or adjusted under 35 %8}8;8}38?5 i} ;gg}g ?:1? eial.t |
aokKa et al.
US.C. 154(b) by 0 days. 2014/0032796 Al 1/2014 Krause
(21) Appl. No.: 14/738,803 Primary Examiner — Young Lee
(22) Filed: Jun. 12, 2015 (74) Attorney, Agent, or Firm — Morgan, Lewis & Bockius
LLP
(51) Imt.ClL
HO4N 7/173 (2011.01) 7 ABSTRACT
GO6T 7/00 (2006.01) A process generates lookup tables for estimating spatial depth
. in a scene. The process 1dentifies subsets ot 1lluminators of a
HO4N 7/18 2006.01 i The p identifi b f illumi f
GO6K 9/52 (2006.01) camera system that has a 2-dimensional array of image sen-
GO6K 9/46 (2006.01) sors and illuminators in fixed locations relative to the array,
(52) US.CL and partitions the image sensors into a plurality of pixels. For
CPC GO6T 7/0051 (2013.01); GO6K 9/4661 each pixel, and for each of m distinct depths from the respec-
(2013.01); GO6K 9/52 (2013.01); GO6T 7/004 tivepixel, the process simulates a virtual surface at the respec-
(2013.01); HO4N 7/183 (2013.01) tive depth. For each of the subsets of illuminators, the process
(58) Field of Classification Search determines an expected light intensity at the pixel based on
CPC ... HO4N 13/025; HO4N 13/0271; HO4N the respective depth. The process forms an intensity vector
o) 21/6175 using the expected light intensities for each of the distinct
See application file for complete search history. subsets and normalizes the intensity vector. For each pixel,
. the process constructs a lookup table comprising the normal-
(56) References Cited ized vectors corresponding to the pixel. The lookup table
U.S. PATENT DOCUMENTS associates each normalized vector with the depth of the cor-
responding simulated surface.
6,650,694 B1 11/2003 Brown et al.
7,930,369 B2 4/2011 Marriott et al. 20 Claims, 61 Drawing Sheets

2200

2302

2204

-5 —

2208—]_|

20— { | Theum

Fhe R lhy

2212 _1

2214~]

2216~}

218 _;

2220~

US 9,235,899 B1

Sheet 1 of 61

Jan. 12, 2016

U.S. Patent

. | 2inbi4
N :
WILSAS _
HYINYTS ﬂ
HIAINOH ~ NOILLYDIS NI
& ! o
é S M
et ! HILVIH .
... : 700d
pil
AT ¢
ovi 0LL 204
. \
L= TONVITddY et > P i TS
@ ADVOTT o O B J
.@E/) SN WS 11/ m WS I
G <12 oo
N =)
vl _ AOCH) 0Lt
S LB y
8L Gy)
= D IR e

05}

U.S. Patent Jan. 12, 2016 Sheet 2 of 61 US 9,235,899 B1

Network Architecture 200 \'

Smart Home Provider
Server System
164
A
L

Network(s)
162

—_———— e — —— — — — — — — — — o — — —— — —— — — — — — —— —

Devxce
204-3 Device

204-4

Device

204-8 Device

204-n

e e - d—— - — o — S S v S S A A AAn A W A e S e e e e et

U.S. Patent

Jan. 12, 2016

164
H

310

SMART HOME
PROVIDER
SERVER SYSTEM

302

HOME DATA

304

SERVICES

ENGINES:

-~ STATISTICS
— INFERENCES
- INDEXING

308

DERIVED

HOME
DATA

Application Programming Interfaces

Sheet 3 of 61

NETWORK(S)
(E.G..INTERNET)

100

2
m
2
by
O
m
7

..................

US 9,235,899 B1

300

e

CHARITIES

314

GOVERNMENTS

316

ACADEMIC
INSTITUTIONS

~—"318

BUSINESSES

~"320

UTILITIES

~"324

162

Figure 3

U.S. Patent Jan. 12, 2016 Sheet 4 of 61 US 9,235,899 B1

400
EXTRINSIC EX:
412 — INFORMATION (e.g., |~ WEATHER FORECAST
FROM INTERNET) | - PRICES
-- NEIGHBORHOOD/HOME INFORMATION
PROCESSING
PARADIGMS
A
~ r Ex: |
- SECURITY
SERVICES N RESPONSE
410a
ADVERTISING/
\ COMMUNICATION N
PROCESSING 4100
306 <
1 SOCIAL
\\4100
CHALLENGES/
RULES/
COMPLIANCE/ - K\
REWARDS 410d
) -
Y
A A A A
404
A 4 A 4 A A A
408
Dsissf |psissp |psiss ... \Dsssf
pciscl |bciscl |pcisc DCiSC
402" A 406
L
Y
DEVICES OF SMART HOME NETWORK 202
DS = DATA SOURCE EX:
DC = DATA CONSUMER ~ LIGHTS, HVAC, WATER CONTROLLERS/
SS = SERVICE SOURCE SENSORS
SC = SERVICE CONSUMER - HOME APPLIANCES

-~ SMOKE/CO/HAZARD SENSORS/ALARMS

Figure 4

U.S. Patent Jan. 12, 2016 Sheet 5 of 61 US 9,235,899 B1

500
\‘

Video Server
System 508

J

Server-Side
Moduie 506

Video Account
Storage Processor(s) 512 Database
Database 516

/O Interface to i/O Interface to
Client(s) 518 Video Source(s) 520

™ /

& Network(s) 162
N ~.>

(% ~—504-1

Client-
Side
Module TPM—502-1

=/
¢ 504-m~"]

Side

|
|
|
Client- I i
|
502-m~ Module 1

Figure 5

U.S. Patent Jan. 12, 2016 Sheet 6 of 61 US 9,235,899 B1

Video Server System 508 \ Operating System 610

Network Communication Module 812

Server-Side Module 506

Memory 606 ~~ | Account Administration Module 614

Video Data Receiving Module 616

512
1 Camera Control Module 618
CPU(s)
608 Event Detection Module 620
\(Event Categorization Module 622
Zone Creation Module 624
Network Person ldentification Module 626
Interface(s) | 604

Filter Application Module 628

Zone Monitoring Module 630

Real-time Motion Event
Presentation Module 632

Event Post-processing Module 634

Server Data 636

Video Storage Database 514

Account Database 516

L]
.
.

Figure 6

U.S. Patent Jan. 12, 2016 Sheet 7 of 61 US 9,235,899 B1

Client Device 504
\ Operating System 7186

Memory 706 ~— Network Communication Module 718

Presentation Module 720

Input Processing Module 722

704 1
Web Browser Module 724
702 Network
1 Interface(s) Application(s) 726
CPU(s) Client-Side Module 502
Account Registration Module 728
l 708 Camera Setup Module 730

Camera Control Module 732
User Interface 710

Event Review interface Module 734
OQutput
Device(s) 712 Zone Creation Module 736
Notification Module 738
input -
Device(s) 714 .

Client Data 770

Account Data 772

! I .
| Location Detection |
| Device 715 |

Figure 7

U.S. Patent Jan. 12, 2016 Sheet 8 of 61 US 9,235,899 B1

Memory 806
Camera 118
\ Operating Logic 816

- e ot e Communication Module 818
{ Location

Radios | | Detection Video Control Module 820
850 { Device 814

Video Capturing Module 824

Comm.
Interface(s)

4
CPU(s) 804 Local Video Processing Module 828

802

Video Caching Module 826

.

808 .
\ Camera Data 83

Camera Setlings 832

Sensor
Input Array Video Data 834

Device(s) 852 -
810 .

Output Sensors lumination Module 860

De\éifg(s) 804 image Capture Module 862

IR Image 864
Hluminators

856 RGB image 866

Lookup Table Generation Module 868

Normalization Module 880

Database 870

Captured Images 872

Lookup Tables 874

Figure 8

Depth Maps 876

Depth Mapping Module 878

U.S. Patent

Jan. 12, 2016

Scene
Understanding

Server 900 N

902

CPU(s)

"5

User interface

e o |

. Display _ ~ 908

-—— o=
i Input Devices 1(\\:_ 910

Communication
interface(s)

Figure 9

Sheet 9 of 61 US 9,235,899 B1
Memory 914 \

Operating System |~ 916
Communications Module L~ 918
Display Module 920
Lookup Table Generation Module -~ 868
Normalization Module |~ 880
Depth Mapping Module |~ 878
Obiject Classifiers |~ 922
Window Detection Module |-~ 924
Floor/Wall/Ceiling Module | 926
x-~direction gradients |~ 940
y-direction gradients |~ 942
depth edge maps - 944
closed components _~ 946
fitted planes |~ 948
Zone Correction Module 928
Point Clouds |~ 930
Camera Pose Estimator 992
Database L~ 870
Captured images |~ 872
RGB Images 934
IR Images |~ 936
Lookup Tables |~ 874
| 876

Depth Maps

U.S. Patent Jan. 12, 2016 Sheet 10 of 61 US 9,235,899 B1

Camera 118 \

Figure 10

U.S. Patent

rows <

Jan. 12, 2016 Sheet 11 of 61 US 9,235,899 B1
1110, 4
11104,
852
1110,

Y
columns

Figure 11

U.S. Patent Jan. 12, 2016 Sheet 12 of 61 US 9,235,899 B1

Camera 118 \

—
[an)
—
O
[T

-
856-1
k\

856-1

856-8

856-7 [

852

856-6)

Figure 12

US 9,235,899 B1

Sheet 13 of 61

Jan. 12, 2016

U.S. Patent

Ww-0eL

A

\

€1 ainbi4

“p

w-zoeL

€-p0cl

A

€-¢0et

¢-coel
\l
Z-v0ct

e
L-$0C L

= =

ps—

W
¢
L-2oci

T
ﬁ
8il

US 9,235,899 B1

Sheet 14 of 61

Jan. 12, 2016

U.S. Patent

H

y-2ovi

H

2ot

1 ainbi4

ﬁ

ceovt

US 9,235,899 B1

Sheet 15 of 61

Jan. 12, 2016

U.S. Patent

4061
WM X /
"L ygogl 74
s £ / 15
| | |]]
wy \A. \am A.
wy x-momr\ia‘
o ¥10G}
E-oﬁoﬁ x(oﬁmv

/momv

VGL 2inbi4

U.S. Patent Jan. 12, 2016 Sheet 16 of 61 US 9,235,899 B1

1508

m\ s (k)/
" | Yii (k)]

1508

Figure 15B

U.S. Patent Jan. 12, 2016 Sheet 17 of 61 US 9,235,899 B1

1606-1

Figure 16A

1604-2

1606-2

Figure 16B

U.S. Patent Jan. 12, 2016 Sheet 18 of 61 US 9,235,899 B1

1606-3

Figure 16C 1604-3

1604-4

1606-4

Figure 16D

U.S. Patent Jan. 12, 2016 Sheet 19 of 61 US 9,235,899 B1

1701
[_
b; — by
1702

./
- 4b2'—5b0~////

I!j’ligj; — 1703

bs — by—4

1706
bs — by

—4x 1

1704

Figure 17A

k = argmax(¥; ; (k) - b; ;)
r ,

Figure 17B

U.S. Patent Jan. 12, 2016 Sheet 20 of 61 US 9,235,899 B1

Figure 18A

1812 1814

Figure 18C

U.S. Patent Jan. 12, 2016 Sheet 21 of 61 US 9,235,899 B1

1822 1824

= R

Figure 18E

US 9,235,899 B1

Sheet 22 of 61

Jan. 12, 2016

U.S. Patent

~

V6l ainbi4

\ 9861

2pow aanyded ¥ buunp pauivigo dew yadsa ¢l |

V8L~
SoAOLU BlglUes 7

apow aamded ¥ Buunp paurelgo dew yidsq 7]

wndut 19sn Ag psuieiqo suoy [1]

0861

U.S. Patent Jan. 12, 2016 Sheet 23 of 61 US 9,235,899 B1

1900-B
1901 /
|

1905

Figure 19B

1913

. 1914

Figure 19C

U.S. Patent Jan. 12, 2016 Sheet 24 of 61 US 9,235,899 B1

1900-D
1901 /
|

1005

1803

Figure 19D

1900-E
1921 /
N

Figure 19E

US 9,235,899 B1

Sheet 25 of 61

Jan. 12, 2016

U.S. Patent

461 94nbBi4

om@r)“ _Hm

m@mQ// N \vmv@

29561~ e e

061

561 \J

94 7-0v61
/ . 99561 .
| G-9v61 / *
¥-9561
\ €-9v6l

\ \
. _
. '
[42:1 5w \
\\ \
, ;

;
/
,
, /
P /
; ;
. /
¢ 4
;
4 \
‘ ’
S EOv6L
/ ;
p /
; /
;
. \
‘ 2
\\ ;
, ;

1-9661

Zvel

U.S. Patent Jan. 12,2016 Sheet 26 of 61

3 '1'1'::1:3:;.~,~,;,;.\

o
e
TR -.-.-. o

M-\.\a\

US 9,235,899 B1

Figure 19H

US 9,235,899 B1

Sheet 27 of 61

Jan. 12, 2016

U.S. Patent

|61 @inBi4

DM £ O
% O STHHEA

BT 3HG

wiid Bl O3 EPOURME {4
PO ey Gu o

Sy RO 03U ¢

e v

JOBAEY O IRINRLI0L 5

uRTed FIMUED RBLRD ETARETat

AJBWILUNS WYlLiob]y uoi1D3.1100-3U07

U.S. Patent Jan. 12,2016 Sheet 28 of 61

from

(depth into
image
camera)

:
:
a

HE

.-"..;

e
R

SERRRERRRRRIRY
2
o

R
R RRAARS AR

e

US 9,235,899 B1

Figure 20A

U.S. Patent Jan. 12, 2016 Sheet 29 of 61 US 9,235,899 B1

Gradient Gy 940 \

Figure 20B

Gradient Gy 942 \

Figure 20C

U.S. Patent Jan. 12, 2016 Sheet 30 of 61 US 9,235,899 B1

FE = Hysteresis (\/G§ + G’g)

Figure 20D

Depth Edge Map 944\

Figure 20E

Closed Components 946 ™~ 9461

Figure 20F

946-2

U.S. Patent Jan. 12, 2016 Sheet 31 of 61 US 9,235,899 B1

N ~ N ~
~ ~ ~
N N ~ ~
N ~ ~ N
N ~ \\ \\
. . ~ ~ 2020-4
\ N ~ ~ /
2020-1 w1 N N ~L
N N ~ ~
.
>

z Figure 20G

w,x +w,y +w,z =1
Figure 20H

C =[]

Figure 20l

”

Z(chiz T Wy Cip + WyCiz — 1)
i

Figure 20J

U.S. Paten

Jan. 12, 2016 Sheet 32 of 61

TOm

f

camera})

4
(depth into
image

R
SERRRRRINY

S

AR

s

S
\\L‘: S
S

SRR

US 9,235,899 B1

Figure 20K

A

>

U.S. Patent Jan. 12, 2016 Sheet 33 of 61 US 9,235,899 B1

NS A
~
RN 2116/
NN
NN N
NN ~
N T
NN ~ ~
\ \\ \\ \\ -
NSNS hy (2112)
~ N ~
AN s \\
AN \\ ~
\\ N S~
-
N ~ \\ ~ .
21207 o o Sl e
N AN R RN
N \\ \\\ \\\
b
N \\ SO \\\
AN ~ ~ ~
N ~ ™o ~ v
2110/
Figure 21A
118
g 2128~
T T
f\\\\’\%ez (2124) = 20° 4
NN LT
NN NN Tl
NNONS AN

2110/
Figure 21B

US 9,235,899 B1

Sheet 34 of 61

Jan. 12, 2016

U.S. Patent

¢S1T 1

212 ainbig

vdmﬁ S.w: N.c.r.ﬁ. _":3— <06 w Qg 0sz
.v.m; mﬁN: N.NJ. dm; Ol w /0 Zl
v.:m m.,:m N.:H _,:.m OO w0 Ll
v.:; nd; N.M:H th; 06 w o ol
v) (& | o0l w90 4 <« Z-751Z Anu3 Areuonoi
t:‘ m,: N‘.J Zm o0 woyg L

Fiesgng g lesgng 2 lesgng | jesgng

Joy abeuy) Jo} ebewy Joy affew) Jo} obew L 1ubeH wel

mv_\w\ .EN_‘N\ erw\ OE\N\ mmrm\ vmrN\

N 061z Areuonolq

U.S. Patent Jan. 12, 2016 Sheet 35 of 61 US 9,235,899 B1

Capture IR images for each
of the illuminator subsets
plus a baseline image.

2162 \ \';é/? 2164 \

Cqmpute_ aquusted IR Identify a possible
intensity images :

corresponding to each | | floor region from the

\ . images.
iltuminator subset. g
\\\.\\ ////
O
\\ N\ g
\\ N /
N /7
\ \\ /’//
\\ A /'/ //
Ny '/

21 66 >
2150 \ \
Apply the classifier to the
Dictionary |77 »{ adjusted IR intensity images
within the possible floor region.

(height, tilt)
- 5
2168

Figure 21D

US 9,235,899 B1

Sheet 36 of 61

Jan. 12, 2016

U.S. Patent

3Lz a4nbi4

JaN

[suwe aoman] + {%g — ¥n) + (%9 — Fo) 4+ (Fg — Ty + (g~ DN = aoumsip «——2-9/127

o8le z2l1e
HAA\;«D Resn P:«Q Se e nﬁ‘VQ nﬁmn TN nhm.ﬁ Koaws ﬂmm& ﬁﬁ—NQ Geonoe mHNQ Gann nmND :.—AQ Ce e vh—ﬁ Gane nﬁFQVu A..\A._ : ﬂAVnNH I'q mnNH nNmNH n—.NHVJ
8.12 0/12
f A h) A
AE}& Covs Clpp Geee Clpp SUEP €--- Cgp oes LR LUZp - - T Free ClTp fUlp - Al eee «:mv / .Acw _ ﬁ aoH _ mw r.c.m _ NH r.oH _ ;v.

%LEFNM\\\\L

U.S. Patent Jan. 12, 2016 Sheet 37 of 61 US 9,235,899 B1

2200

|

2202~_| The method of generating a lookup table for use in estimating spatial depthin a
visual scene.

2204 ~—]_| The method is performed at a server having one or more processors, and
memory storing one or more programs configured for execution by the one
Of TOTe Processors.

y

2206~ Identify a plurality of distinct subsets of IR illuminators of a camera systen.

2208 —~(_ | The camera system has a 2-dimensional array of image sensors.

The array of image sensors includes more than one million image
Sensors.

2210 —_

2212~ | The IR illuminators are in fixed locations relative 1o the array of 1mage

SCNSOors.

4

2214
™~ Partition the image sensors into a plurality of pixels.

2216 \‘-‘i Each pixel includes a respective single image sensor. E
B o e o o e o o o o e o o o~ " o on Son e e e e o o o o e . 4

2218 [T T T T T T T T T T T T
\“'i Each pixel includes a respective plurality of image sensors. 2

B o v o o o Y Yo - e o e v o - e e e e e v e e e e e e e e we We e e e e e - 3

2220 \-—E Each pixel includes more than 50 respective image sensors. E
I o o o i = = = R R R = = - = = = = = = e e e e e e e e 3

Figure 22A

U.S. Patent Jan. 12, 2016 Sheet 38 of 61 US 9,235,899 B1

2222) . . .
T For each pixel, and for each of m distinct depths from the respective pixel:

2224~ | Simulating a virtual surface at the respective depth.

2226 | I The vieuad curface af fhe recective donth e E
! The virtual surface at the respective depth is a planar surface. :

e oo o o o i o e o o o o = = = m = = = e e e = e e = e em = m e e e 3

2228— P T T T T T ST T T
\——-4' The virteal surface at the respective depth is a spherical surface. :

2230\\—1: The virtual surface at the respective depth is a parabolic surface. E

2232\\—1: The virtual surface at the respective depth is a cubic surface. E

2234~ | For each of the plurality of distinct subsets of IR illuminators, determine an

expected IR light intensity at the respective pixel based on the respective
depth and based on only the respective subset of IR illuminators emitting IR
light.

2236l | The expected IR light intensity at the respective pixel is based on
i characteristics of the IR illuminators of the camera system.

2238—~J4_1 1 3

2240 ~j—t—! The characteristics include orientation of the IR illuminators
i relative to the sensor array.

1
! The characteristics include location of the IR illuminators
! relative to the sensor array,

2242 —4_

Figure 22B

U.S. Patent Jan. 12, 2016 Sheet 39 of 61 US 9,235,899 B1

2222 ~_ For each pixel, and lor cach of m distinct depths from the respective pixel
{continued):

2244~ | Forman intensity vector using the expected IR light intensities for cach of
the distinct subset.

2248~ _] Normalize the intensity vector.

. !
Normalize each intensity veclor by determining a respective !
magnitude of the intensity vector and dividing each component of the
t

1

'
2248 — |
]
E iatensity vector by the respective magnitude.

2250~ For cach pixcl, construct a lookup table comprising the normalized vectors
corresponding to the pixel.

2252——] | The lockup table associates each respective normalized vector with the
respective depth of the respective simulated surface.

Figure 22C

U.S. Patent Jan. 12, 2016 Sheet 40 of 61 US 9,235,899 B1

2300
2302
N The method of creates a depth map of a scene.
2304 —|_| The method is performed al a computing device having one or more
processors, and memory storing one or more programs contigured for
execution by the one or more processors.
2306 — g T oo K
[~ The computing device 1s a server distinct from a camera system t
b o e e o o o o o e e H
— 0o e K
2308 \--—: The computing device is included in the camera systen. !
e s mn m e S e S v v e e e e e e e e M Am e e M W M G e Y v e e e e e mm A M Am e e e e M e 4

231 0_: Detect a trigger event. Creating a depth map of the first scene is in response to

' detecting the trigger event.
|

1
2312 _\:sq The first scene includes a first object positioned at a first location within the

first scene.

2314 N Detect the first object positioned at a second location within the first
scene, where the second location 1s distinct from the first location.

H
t
. . ‘
first mode is activated, and the array of image sensors has an associated !

second pixel gain curve when the second mode is activated. !

Figure 23A

U.S. Patent Jan. 12, 2016 Sheet 41 of 61 US 9,235,899 B1

7

2322~_{ For each of a plurality of distinct subsets of IR illuminators of a camera system;

2324=~{_| One or more of the subsets of the IR illuminators consists of a single IR
' illuminator.
i

2326—~]_ The plurality of IR illuminators are orientated at a plurality of distinct angles

2328~ | Each of the distinct subsets of TR illuminators comprises two adjacent IR
i illuminators, and the distinct subsets of IR illuminators are non-overlapping.
]

2330— Receiving a captured IR image of a first scene taken by a 2-dimensional
] array of image sensors of the camera system while the respective subset of
R ifluminators are emifting IR light and the IR illuminators not in the
respective subset are not emitting 1R light.

2332 . . . o e
™~ The image sensors are partitioned into a plurality of pixels

2334—~{__| Receive a baseline IR image of the scene captured by the array of sensors
: while none of the IR illuminators are emitting IR light.
i

2336
T For cach pixel of the plurality of pixels:

2338 Use the captured TR images to form a respective vector of light intensity at

the respective pixel.

——

1

— T T T S
2340 _J:Thc respective vector for cach pixel has a plurality of components. Eachi
1 of the components corresponds to a respective IR light intensity for the 1
[} . .) . .

i respective pixel for a respective captured IR image. 1

Forming each respective vector of light intensity at a respective pixel

comprises subtracting a light intensity at the pixel of the baseline IR

image from the light intensity at the pixel of each of the captured IR
images.

2342 —{_|

Figure 23B

U.S. Patent Jan. 12, 2016 Sheet 42 of 61 US 9,235,899 B1

2336
T For each pixel of the plurality of pixels (continued):
23441 | Estimatea depth in the first scene at the respective pixel by looking up the
respective vector in a respective lookup table.
2346 e !
TN Lookup the respective vector in the respective lookup table by !
\ computing an inner product of the respective vector with records in the !
i lookup table. !
¢ t
2348 —l_t yT oo TTToTT T oo T T m T e m T m e e '
- ! For each record in the lookup table, compute the inner product E :
; : of the respective vector and the respective record. o
o S
' ;
. { [TTTT T T T T oS —o oo ——o——-- N

2350 \“:____: The inner product is the dot product. i E
3.‘ L R A e] - :
F""‘""""""""""""""’""""’"""""""""""""""""""""""'""""“‘
2352-—_3 Determine the depth in the first scene at the pixel as the depth :
i corresponding to a record in the lookup table whose inner product with !

i) . P .
: the respective vector is greatest among the computed inner products !
! for the respective vector. !
2354 —— | Vo T e T :
; The respective lookup table is generated during a calibration process. |
e e e o e o = = = = = = = = - = - = - - = ———— = ——— - §
o I !
2356 —~]_! 1 The calibration process includes simulating a virtual planar E !
i+ surface at a plurality of respective depths in the first scene. ¢ !
| b e o e i |
| o o e e e o
b o . . !
2358 —+ !t The calibration process includes, for each pixel and each ; !
P respective depth, determining an expected reflected light o
P intensity. v
4] t i
i B o o o o o o o —————————————————— -]
i H
L o m i m m m m m m m m war m owar ay ar ay e ey s e W e wan e Map Mer Mab Mew Mab Mew ey War e W ar Was ap Was ar W e wan e wan Wan o 4
l’"‘"‘"‘"‘"""""""""""""""""‘“""""‘““““““““““‘
2360 -—~_$ Each respective lookup table includes a plurality of normalized light !
i intensity vectors, where each normalized light intensity vector !
: corresponds to a respective depth in the first scene. !

1
2362~ | The recoective Tookeun tahle T
— The respective lookup table is downloaded to the camera system from !
i aremote server during an initialization process prior to creating the !
i depth map. '
i

Figure 23C

U.S. Patent Jan. 12, 2016 Sheet 43 of 61 US 9,235,899 B1

2400
2402 e . .
T The method classifies objects in a scene.
2404 —_| The method is performed at a computing device having one or more
pracessors, and memory storing one or more programs configured for

execution by the one or more processors.
2406 — g T T ST i
*': The computing device is a server distinct from a camera system. I
e o o o o o o o A W R R R R A R A R A R A R R R A e A e e e e e e e 4
—] o T T i
2408 \———: The computing device is included in the camera system. !
St o v o - T e e W e e W e W W W W e e e e e e e e e e e 4

2410—~_] Receive a captured IR image of a scene taken by a 2-dimensional image sensor
array of a camera system while one or more IR illuminators of the camera system
are emitting IR light, thereby forming an IR intensity map of the scene with a
respective infensity value determined for each pixel of the IR image.

2412 T T T T T T T
1 Each pixel of the IR image corresponds to a unique respective image sensor |
t . .
] in the image sensor array. :
t
——— 4

The pixels of the IR image form a partition of the image sensors in the image
Sensor array.

]
2416 H‘-—-; At least one pixel corresponds to a plurality of image sensors in the
! image sensor array.

For each of a plurality of distinct subsets of IR illuminators of the camera
system, receive a respective IR sub-image of the scene while the respective
subset of IR illuminators are emitting IR light and the IR illuminators not in

the respective subset are not emitting IR light.

Figure 24A

U.S. Patent Jan. 12, 2016 Sheet 44 of 61 US 9,235,899 B1

2424—~_| Use the IR intensity map to identify a plurality of pixels whose corresponding
intensity values are within a predefined intensity range.

2426~ The predefined intensity range comprises all intensity values below a
[threshold valoe.

2428~ Cluster the identified plurality of pixels into one or more regions that are

substantially contiguous.

2430 — Clustering the identified plurality of pixels into one or more regions uses a
depth map that was constructed using the image sensor array.

Clustering the identified plurality of pixels into one or more regions uses an
RGB image of the scene captured using the image sensor array.

2432 —~

2434~_{ Determine that a first region of the one or more regions corresponds to a specific
material based, at least in part, on the intensity values of the pixels in the first
region.

2436~_! Determining that a first region of the one or more regions corresponds to a
1 specific material includes determining that the first region is substantially a
' quadrilaleral.
i
| The first region is substantially a quadrilateral when a total absolute E
! difference in area between the first region and the quadrilateral is less !
! than a threshold percentage of the quadrilateral’s area. ;

2438 —

; i . . .
2440 _\\;_: The specific material is glass and the first region is determined to
] correspond to a window in the scene.

Figure 24B

U.S. Patent Jan. 12, 2016 Sheet 45 of 61 US 9,235,899 B1

Store information in the memory that identifies the first region.

1 4
2446—~_} Review the video stream to detect movement in the scene. The first region is
; cxcluded from movement detection.

L 4

2448'_} Gengerate a motion alert when there is motion detected at the scenc outside of the
: first region.
H

Figure 24C

U.S. Patent Jan. 12, 2016 Sheet 46 of 61 US 9,235,899 B1

2500
2502 . i . .
N The method identifies large planar objects in scenes.
gep i
2504 —_| The method is performed at a computing device having one or more
processors, and memory storing one or more programs configured for
execution by the one or more processors.

— (T T ST 3
2506 \—‘: The computing device is a server distinct from a camera system., :
b e = = e e =]
2508l T g T T
— The computing device is included in the camera system. :
L e R e Y 4

2510 Receivea plurality of captured IR tmages of a scene taken by a 2-dimensional
array of image sensors of a camera system.

2512— Each IR image is captured when a distinet subset of IR Hluminators of the

camera system are illuminated.

2514 N The image sensors are partitioned into a plurality of pixels. E
2516 N
N Construct a depth map of a scene using the plurality of IR images.
e 1
2518 —{ ! For each pixel: :
4
2520 S NP I
“\'r.,: Use the captured IR images to form a respective vector of light o
' ! intensity at the respective pixel. Eo
: e e o e A = = A A A - e = R A A - e e A A A o e e s :
: g g gy !
2522 — ' 3 Estimate a depth in the first scene at the respective pixel using the

] respective vector and a respective lookup table.

Figure 25A

U.S. Patent Jan. 12, 2016 Sheet 47 of 61 US 9,235,899 B1

2524~ Use the depth map to compute a binary depth edge map for the scene. The binary
depth edge map identifics which points in the depth map comprise depth
discontinuities.

2526~ \) ‘ :

Identify a plurality of contigunous components based on the binary depth edge map.
2528 ‘

N Determine that a first component of the plurality of contiguous componeats
represents a large planar surface in the scene.
2530 . .
TN Fit a plane to points in the first component.

25327 Determine the orientation of the plane.

2534 ""___J: The orientation of the plane is upwards, and the plane is determined to
: be a floor.]

v v A v M A i v e e e e e R A R AR R AR AR AR AR AR AR Am A Am AR R AR AR Nw AR e M A e Ve M M b e e e e

2536 —}_| 1 The orientation of the plane is downwards, and the plane is determined
to be a ceiling.

(T T T T
2538 “‘*___1: The orientation of the plane is horizontal, and the plane is determined |
: to be a wall. :
e mn o e mn e mm am Am e G N MR R R W e e e e Ve Y YR YR TR R e T T A M e A e e e R MR Mm e M e e e e e e 4

2540 —_| Determine that the plane fitting residual error is less than a predefined
threshold.

Figure 25B

US 9,235,899 B1

U.S. Patent Jan. 12,2016 Sheet 48 of 61
2600
2602
™ The method recomputes zones for scenes.
2604 —_| The method is performed at a computing device having one or more
processors, and memory storing one or more programs configured for
execution by the one or more processors.
2606 \\“'i The computing device 1s a server distinct from a camera system. E
L T T T U — 4
26808 — U
\-~: The computing device is included in the camera system. ;
Y
2610~ Receive a first RGB image of a scene taken by a 2-dimensional array of image
sensors of a camera system at a first time.
2612~_| Receive a first plurality of distinct IR images of the scene taken by the array of
image sensors temporally proximate to the first time.
261471 Fach ofthe IR images is taken while a different subset of IR illuminators of
the camera system is emitting light.
2616~ Use the first plurality of IR images to construct a first depth map of the scene,
p 34 g P Y
where the first depth map indicates a respective depth in the scene at a plurality of
pixels.
2B T T T T T e e e
i Each pixel corresponds to one or more of the image sensors. '
t
___ 1
[Suatatadaadatatfatshaibai et aatadathatadthafesbaf ettt 1
2620 N Partition the image sensors into a plurality of pixels. !
! !
L I e §
2622 —_! E For each pixel. form a respective vector of the received IR images at ; !
b the pixel. P
H t H :
§ e e o o - — — ——— - - — - - e e = ———————— Ll ;
ettt ittt -~
2624 — 1 :
;
]
]
1

Figure 26A

U.S. Patent Jan. 12, 2016 Sheet 49 of 61 US 9,235,899 B1

2626~_| Receive designation from a uscr of a zone within the first RGB image, where the

zone corresponds to a contiguous plurality of pixels.
2628~ _ T TT oo T e
1

2630—~_] Reccive a sccond plurality of distinct IR images of the scenc taken by the array of
image sensors at a second time that 1s after the first time.

2632 Each of the IR images in the second plurality 1s taken while a different

subset of IR illuminators of the camera system is emitting light.

Y.

2634 . .
™ Use the second plurality of IR images to construct a second depth map of the
scene.
A 4
2636~_| Determining physical movement of the camera system based on the first and
second depth maps.

2638\‘—1‘ The determined physical movement is an angular rotation. E
i
___]

2640 I The determined physical movement is a lateral displacement. E
i
___]

2642 '\4 The determined physical movement includes both an angular rotation and a E
! lateral displacement. '
___]

A1 e

f
~— Identify a plurality of points in the first depth map and a corresponding
: plurality of points in the second depth map.
t
t
i

2646 "I~ Determine a respective displacement for each of the identified points
i between the first and second depth maps.

Figure 26B
e g

U.S. Patent Jan. 12, 2016 Sheet 50 of 61 US 9,235,899 B1

®

2636 .. .
N Determining physical movement of the camera system based on the first and

second depth maps {continued).

Form a first point cloud using a first plurality of points from the first depth

2648—] 7§
1
; map.

2650—_ Form a second point cloud using a second plurality of points from the
| second depth map.
]

2652—{ Computing a minimal transformation that aligns the first point cloud with
i the second point cloud.
i

2654—~_] Based on the determined physical movement, translate the zone in the first RGB
image inlo an adjusted zone.

2656 —

(¢}
o
£
foed
s
-
@
(=9
In
o
=
<]
(e}
<
=
3
.
o1
[}
o
1
o
@
g
=
(=%
R
o
jovl
o
et
2
o
=
o
el

2658 N\._{ A first edge of the first quadrilateral has a length that is different from
: a corresponding second edge of the second quadrilateral.

Figure 26C

U.S. Patent Jan. 12, 2016 Sheet 51 of 61 US 9,235,899 B1

2700

|

2702~_] The method estimates the hei ght and tilt angle of a camera system having a 2-
dimensional array of image sensors and a plurality of IR illuminators in fixed
focations relative to the array of image sensors.
2704 —_| The method is performed at a computing device having one or more
processors, and memory storing one or more programs configured for
execution by the one or more processors.
2706 — T . T T,
\“: The computing device is a server distinct from the camera system. !
U ot o v v o e v e A e A e AR AR AR e A A A N A A A N Y Y Y W YN W W T Y Y S e A AR R AR AR AR am e e A e 4
2708~ T o T T
— The computing device is included in the camera system. '
Qe o o o e e v v e n n n n e n e e e A M R M A A e e M M M M M b e e e T s T e A e e e e e e e e 4
Y
2710~ Identify a plarality of distinct subsets of the IR ilhuminators.
o o e
.. f
2712 i Each of the distinct subsets of the IR illuminators comprises two adjacent IR ¢
TN f
' illuminators, and the distinct subsets of the IR illuminators are non- !
| overlapping. :
t
___ 3
Y
2714~ Partition the image sensors into a plurality of pixels.
2Te— i T T T T T TS
[~ Each pixel comprises a respective single image sensor. :
e e e e e ———————— ;
P T TG
2718 _\‘-‘i Each pixel comprises a respective plurality of image sensors |
Tn o mm e am am am am am A am am am Ne w NP Ve VP Ve e e e e e e AR A R A am am mm R A AR M N N N S N e e S N e v e 3

Figure 27A

U.S. Patent Jan. 12, 2016 Sheet 52 of 61 US 9,235,899 B1

2720~_

For each of a plurality of heights and tilt angles, construct a dictionary entry that
corresponds to the camera system having the respective height and tilt angle above
a floor.

2722 The respective dictionary entry includes respective IR light intensity values
for pixels in images corresponding to activating individually each of the

distinct subsets of the IR illuminators.

—

|}
i
i
floor, and the images, and computing expected IR light intensity valaes for !
¢
t

2723—l_} The constructed dictionary entries are based on simulating the camera, the
[}
)
' pixels in the simulated images.
[}
)
)

2724 — | Each expected IR light intensity value is based on characteristics of the

i - . . .
t IR illuminators, including one or more of: fux, orientation of the IR

1 illuminators relative to the array of image sensors, and location of the
I

) IR illuminators relative to the array of image sensors.

I

2725—_,5 A respective dictionary entry for a respective height and respective tilt angle
1 is based on measuring IR light intensity values of actual images captured by
\ the camera having the respective height and respective tilt angle with respect
i to an actual floor.

2726{_| Constructing cach respective dictionary entry includes normalizing the
' respective dictionary entry.
]

]
2728 —+h_ _+ Normalizing the respective dictionary entry includes: determining a

' respective total magnitude of the light intensity features in the
respective dictionary entry and dividing each component of the

respective dictionary entry by the respective total magnitude.

2730 "\J The dictionary entries are downloaded to the camera system from the
: computing device during an initialization process.
]

Figure 27B

U.S. Patent Jan. 12, 2016 Sheet 53 of 61 US 9,235,899 B1

2732~ For each of the plurality of distinct subsets of the IR illuminators, receive a
captured IR image of a scene taken by the array of image sensors while the
respective subset of the IR illuminators are emiiting IR light and the IR
iltuminalors not in the respective subset are not emitting IR light.
2734\": Receive a baseline IR image of the scene captured by the array of image

3 sensors while none of the IR illuminators are emitting IR light.

2736 "N~ Subtracta fight intensity at each pixel of the baseline IR image from the light

i intensity at the corresponding pixel of each of the other captured IR images.
)

2738~ Use at least one of the captured IR images to identify a floor region corresponding
to a floor in the scene.

2740 ﬁ*—; Construct a depth map of the scene using the captured iR images. E
B n o A A A A A A A A o A A A A A A AR AR AR A AR AR AR A AR A AR A R A AR AR AR R AR R AR R AR R AR AR AR am A am e am e E

2742 _\‘—1: Identify a region bounded by depth discontinuities. 3
T e e e e e e e = - - - - - - - - = = = = = e e e - e e e e e e e e we we e e e e e e e e e e e 4

2744 — x'"';)""."""""."'. """" T T T
~— etermine that the region is substantially planar and facing upwards. !

2746~_{ Form a vector including pixels from the captured IR images in the identified floor
region.

Figure 27C

U.S. Patent Jan. 12, 2016 Sheet 54 of 61 US 9,235,899 B1

2748~ Estimate a camera height and camera tilt angle relative to the floor by comparing
the vector to the dictionary entries.

r
2750 | Normalize the vector and the dictionary entries prior to computing the
1 .
1 distances.
]

pr sy R
5 — Compute a respective distance between the vector and respective dictionary
| entries.
|
I
1 . . e !
2754 ‘\\:__: Computing the distance between a vector and respective dictionary !
! entries comprises computing a Euclidean distance that uses only vector !
i components corresponding to pixels in the identified floor region. !

2756—{_ Select a first dictionary entry whose corresponding computed distance is less
| .
| than the other computed distances.
|

2758 .\“—: Estimate the camera height and tilt angle to be the height and tilt angle

] associated with the first dictionary entry.

Figure 27D

US 9,235,899 B1

Sheet 55 of 61

Jan. 12, 2016

U.S. Patent

gz @inbi4

\\\@owm

: CLUOD fuisn
Nzigz m Q37

m USRS LWOY
P ot yeiop i pauieygo sabew Hi

ot yudep

//ormm :

808¢

BuiBewy ¢ 40} Buissaooud gieq “ uoiisinboe eyeQ

H ﬂ

08¢
208¢

US 9,235,899 B1

Sheet 56 of 61

Jan. 12, 2016

U.S. Patent

Adtd b ddandddddaanddd bt aaidddddanittdddsanddddbsatddivsanddtddranidddboandd

SAAGIHIIM B4 O3 Ao STRp

g pesasepapendd v a%y

pedeis 3y 51 PAMEISURX

2 G spens 30 spodieg

IBGS P SPQUDIS ~
suoial yemaads
a4y Bafinuam

abuig =

[T ofewms gy o
f Tl dew pdag »

8062

R R R R R e R R R R R R T R R R R R PP R P REY FEE R TR PR R RS

ABOF PAOITION
otpx Budsrnem
afipuy =

SUOLSOH
LB JRRIVEUP
DT L PREWIGE
P] sidvass by «
dde
B3¢ 02 ekl 4360 #

9062

62 9inBi4

B R R R R R R R R R R R Ry Ry AL

S300Y
S goany syodiins
Aeeis Bunespw

sfivuws agey =

{11}

drut aBpadag »

11 et gadng

¥06¢C

*

P A R A R A R R R R)

pitres
of wfewy widep B

Lefisd
LT

waya st SUIPHIO ¢

g G DS 243

ey

s BassU GUY SAR0Y »

BussAgedd Ofed B SRtk
offvus raviByeG
- JuBIg 13

=l B

LR

...wr@mmi :
PIBALBORALS 23 00U .

PR ‘saseodas G A

Ao -

v

Bupneauns a8eun W 24—~ -

3Bens ssaunbiug
WA Ty +

RSO

Poifng s0f RS

IS SRS
mmﬁrx afippqudag g »

BHADS §

JABSMIE (I R SHS
abpusgadag vy o

sufieust 31 wes
pavoshingnis Joag »

[49/:74

Hiog 1t Buass

1t 50
=

20}~

8162

9162

yi6e

\

<

3 -

trrrradirrrrascaelrys

/

R R R R R R S R R T T R

[4%:14

PO ..a Y

~
$$
bt

Crdd

US 9,235,899 B1

Sheet 57 of 61

Jan. 12, 2016

U.S. Patent

0¢€ @anb14
°®
® ®
e ®
Soml/
\.\\\ //; Pl ek
£-900¢ " M M M N \\\ N
M M M S 1\ [r900€
L N < ez . \ UOTSTABTSY, = J
R R L 9 Burited = D
i i
~ — I : TTeM = 1T
- T k ! MOPUTM = M
O \ 1] Tee 20004 = 1
] N // 7
/ O O O . //ll \\\\
N < $00€
//// Q O O Q/_
Z-900¢€ \ N~ - - / 1-900€ /
moom\ 200¢g

US 9,235,899 B1

Sheet 58 of 61

Jan. 12, 2016

U.S. Patent

Figure 31A

R

Figure 31B

U.S. Patent Jan. 12, 2016 Sheet 59 of 61 US 9,235,899 B1

Subject: Re-align moved Activity
Zone(s})?

Hello,

Wetve noticed that vour camera has
appeared to move. We can fix your
[Doorway From Kitchen] activity
zone. We recommend moving it from
the current {solid) region to the
recommended {dashed) region.

Click here To move your gong,

Thanks,
Your Friendly Vision Team

Figure 31C

US 9,235,899 B1

Sheet 60 of 61

Jan. 12, 2016

U.S. Patent

aig ainbi4

R

=
=

R
R

US 9,235,899 B1

Sheet 61 of 61

Jan. 12, 2016

U.S. Patent

wes], UOTSTIA ATPU@TIg INox
SRy

“Buez STYl dyeTep o3 BISTEIITS

*31 BUIADWSJ
pUSHNODBS 34 poJgaddesIp aavy
o3 sJeadde ausz A3TIATINE [4o0g
pfeden] JnDA IBYY PIOTIOU 34 DM

‘OTT®H

é{s)sunz AYTATIOY 23RTeg :3delgng

pzLe

1€ ainbig

0cie

US 9,235,899 B1

1
SIMULATING AN INFRARED EMITTER
ARRAY IN A VIDEO MONITORING CAMERA
TO CONSTRUCT A LOOKUP TABLE FOR
DEPTH DETERMINATION

RELATED APPLICATIONS

This application is related to U.S. Provisional Application
Ser. No. 62/021,620, filed Jul. 7, 2014, entitled “Activity
Recognition and Video Filtering,” which is incorporated by
reference herein in its entirety.

This application is related to U.S. patent application Ser.
No. 14/723,276, filed May 27, 2015, entitled “Multi-Mode
LED Illumination System,” which is incorporated by refer-
ence herein in its entirety.

This application is related to U.S. patent application Ser.
No. 14/738,818, filed Jun. 12, 2015, entitled “Using a Scene
Illuminating Infrared Emitter Array in a Video Monitoring
Camera for Depth Determination”, which is incorporated by
reference herein in its entirety.

This application is related to U.S. patent application Ser.
No. 14/738,8006, filed Jun. 12, 2015, entitled “Using Infrared
Images of a Monitored Scene to Identify Windows”, which is
incorporated by reference herein in its entirety.

This application is related to U.S. patent application Ser.
No. 14/738,817, filed Jun. 12, 2015, entitled “Using a Depth
Map of a Monitored Scene to Identify Floors, Walls, and
Ceilings”, which is incorporated by reference herein in its
entirety.

This application is related to U.S. patent application Ser.
No. 14/738,825, filed Jun. 12, 2015, entitled “Using Depth
Maps of a Scene to Identify Movement of a Video Camera”,
which is incorporated by reference herein in its entirety.

This application is related to U.S. patent application Ser.
No. 14/738,811, filed Jun. 12, 2015, entitled “Using a Scene
Illuminating Infrared Emitter Array in a Video Monitoring
Camera to Estimate the Position of the Camera”, which is
incorporated by reference herein in its entirety.

This application is related to U.S. patent application Ser.
No. 14/738,816, filed Jun. 12, 2015, entitled “Using a Scene
Information from a Security Camera to Reduce False Secu-
rity Alerts”, which is incorporated by reference herein in its
entirety.

TECHNICAL FIELD

The disclosed implementations relate generally to video
cameras, and more specifically to using illumination emitters
from a video camera to identify properties of the scene moni-
tored by the camera or to identify properties of the camera
itself.

BACKGROUND

Video surveillance cameras are used extensively. Usage of
video cameras in residential environments has increased sub-
stantially, in part due to lower prices and simplicity of deploy-
ment. In many cases, surveillance cameras include infrared
emitters in order to illuminate a scene when light from other
sources is limited or absent.

Some video cameras enable a user to identify “zones”
within the scene that is visible to the camera. This can be
useful to identify movement or changes within those zones.

Because a surveillance camera can capture a very large
amount of data (e.g., running 24 hours a day, 7 days a week),
some cameras enable a user to set up alerts based on specific

10

15

20

25

30

35

40

45

50

55

60

65

2

criteria. The criteria can include movement within a scene,
movement of a specific type, or movement within a certain
time range.

SUMMARY

Accordingly, there is a need for camera systems that pro-
vide simpler usage and better utilization. In various imple-
mentations, the disclosed functionality complements or
replaces the functionality of existing camera systems.

In accordance with some implementations, a process gen-
erates lookup tables for use in estimating spatial depth in a
visual scene. The process is performed at a server having one
or more processors and memory. The memory stores one or
more programs configured for execution by the one or more
processors. The process identifies a plurality of distinct sub-
sets of IR illuminators of a camera system. The camera sys-
tem has a 2-dimensional array of image sensors (e.g., photo-
diodes) and a plurality of IR illuminators in fixed locations
relative to the array of image sensors. The process partitions
the image sensors into a plurality of pixels. In some imple-
mentations, each pixel comprises a single image sensor. In
some implementations, each pixel comprises a plurality of
image sensors, which can be 50 or more. For each pixel and
for each of m distinct depths from the respective pixel, the
process simulates a virtual surface at the respective depth. In
some implementations, the simulated virtual surfaces are pla-
nar, but in other implementations the simulated surfaces are
spherical, parabolic, or cubic. For each of the distinct subsets
of IR illuminators, the process determines an expected IR
light intensity at the respective pixel based on the respective
depth and based on only the respective subset of IR illumina-
tors emitting IR light. The process then forms an intensity
vector using the expected IR light intensities for each of the
distinct subsets, and normalizes the intensity vector. For each
pixel, the process constructs a lookup table comprising the
normalized vectors corresponding to the pixel. The lookup
table associates each respective normalized vector with the
respective depth of the respective simulated surface.

In some implementations, the expected IR light intensity at
the respective pixel is based on characteristics of the IR illu-
minators of the camera system. In some implementations, the
characteristics include lux, orientation of the IR illuminators
relative to the sensor array, and/or location of the IR illumi-
nators relative to the sensor array.

In some implementations, the process normalizes each
intensity vector by computing a respective magnitude of the
intensity vector and dividing each component of the intensity
vector by the respective magnitude.

In some implementations, the array of image sensors com-
prises more than one million image sensors. In some imple-
mentations, the array of image sensors is downsampled to a
smaller number of pixels. For example, an array of image
sensors with one million individual sensors may be down-
sampled to 10,000 pixels. The downsampling used (if any)
may depend on available resources, such as memory, band-
width, processor speed, and/or number of processors.

In accordance with some implementations, a process cre-
ates a depth map of a scene. The process is performed at a
computing device having one or more processors and
memory. The memory stores one or more programs config-
ured for execution by the one or more processors. For each of
a plurality of distinct subsets of IR illuminators of a camera
system, the process receives a captured IR image of a first
scene taken by a 2-dimensional array of image sensors of the
camera system while the respective subset of IR illuminators
are emitting IR light and the IR illuminators not in the respec-

US 9,235,899 B1

3

tive subset are not emitting IR light. The image sensors are
partitioned into a plurality of pixels. In some implementa-
tions, each pixel comprises a single image sensor, but in other
implementations, each pixel comprises a plurality of image
sensors. In some implementations, the computing device is a
server, and the captured images are received from a remotely
located camera. In some implementations, the computing
device is included in a camera, and the images are processed
locally at the camera. For each pixel of the plurality of pixels,
the process uses the captured IR images to form a respective
vector of light intensity at the respective pixel. The process
then estimates a depth in the first scene at the respective pixel
by looking up the respective vector in a respective lookup
table. In some implementations, the lookup table is stored at
the camera system during a calibration process.

In some implementations, looking up the respective vector
in the respective lookup table includes computing an inner
product of the respective vector with records in the lookup
table. In some implementations, the inner product is com-
puted for each record in the lookup table. The process com-
putes the depth in the first scene at the pixel as a depth
corresponding to a record in the lookup table whose inner
product with the respective vector is greatest among the com-
puted inner products for the respective vector.

In some implementations, each respective vector for a
respective pixel comprises a plurality of components, with
each ofthe components corresponding to a respective IR light
intensity for the respective pixel for a respective captured IR
image. In some implementations, computing an inner product
comprises computing a dot product.

In some implementations, the IR illuminators are orien-
tated at a plurality of distinct angles relative to the array of
image sensors.

In some implementations, the depth map of the first scene
is created in response to detecting a trigger event. In some
implementations, the trigger event is detecting movement of
a first object in the first scene from a first location to a second
location. In some implementations, the trigger event is a
power interruption event.

In some implementations, a respective lookup table is gen-
erated during the calibration process. In some implementa-
tions, the calibration process includes simulating a virtual
planar surface at a plurality of respective depths in the first
scene and determining, for each pixel and each respective
depth, an expected IR light intensity.

Implementations select the distinct subsets of IR illumina-
tors in various ways. In some implementations, each of the
distinct subsets of IR illuminators comprises two adjacent IR
illuminators, and the distinct subsets of IR illuminators are
non-overlapping.

In some implementations, each respective lookup table
includes a plurality of normalized IR light intensity vectors,
and each normalized light intensity vector corresponds to a
respective depth in the first scene.

In some implementations, the respective lookup tables are
downloaded to the camera system from a remote server dur-
ing an initialization process prior to creating the depth map.

In some implementations, prior to capturing the IR images,
the process switches from a first mode of the camera system
to a second mode of the camera system, including deactivat-
ing the first mode and activating the second mode. In some
implementations, the array of image sensors has an associated
first pixel gain curve while the first mode is activated, and the
array of image sensors has an associated second pixel gain
curve while the second mode is activated.

In some implementations, the process receives a baseline
IR image of the scene captured by the array of sensors while

15

20

25

30

40

45

50

65

4

none of the IR illuminators are emitting IR light. Then, form-
ing each respective vector of light intensity at a respective
pixel comprises subtracting a light intensity at the pixel of the
baseline IR image from the light intensity at the pixel of each
of'the captured IR images.

In accordance with some implementations, a process clas-
sifies objects in a scene. The process is performed at a com-
puting device having one or more processors and memory.
The memory stores one or more programs configured for
execution by the one or more processors. In some implemen-
tations, the computing device is included in a camera system.
In some implementations, the computing device is a server
distinct from the camera system. The process receives a cap-
tured IR image of a scene taken by a 2-dimensional image
sensor array of the camera system while one or more IR
illuminators of the camera system are emitting IR light. In this
way, the process forms an IR intensity map of the scene with
a respective intensity value determined for each pixel of the
IR image. The process uses the IR intensity map to identify a
plurality of pixels whose corresponding intensity values are
within a predefined intensity range (e.g., all intensity values
between 0 and a positive finite value or all values between two
positive finite values). The process then clusters the identified
plurality of pixels into one or more regions that are substan-
tially contiguous. The process determines that a first region of
the one or more regions corresponds to a specific material
based, at least in part, on the intensity values of the pixels in
the first region, and stores information in the memory that
identifies the first region.

In some implementations, each pixel of the IR image cor-
responds to a unique respective image sensor in the image
sensor array. In some implementations, the pixels of the IR
image form a partition of the image sensors in the image
sensor array and at least one pixel corresponds to a plurality of
image sensors in the image sensor array.

In some implementations, the camera system has a plural-
ity of IR illuminators, and forming an IR intensity map ofthe
scene includes receiving a respective IR sub-image of the
scene for each of a plurality of distinct subsets of IR illumi-
nators. Hach IR sub-image is captured while the respective
subset of IR illuminators are emitting IR light and the IR
illuminators not in the respective subset are not emitting IR
light. The respective intensity value for a respective pixel is
the average of intensity values at the pixel in each of the
sub-images.

In some implementations, clustering the identified plural-
ity of pixels into one or more regions further comprises using
a depth map that was constructed using the image sensor
array.

In some implementations, clustering the identified plural-
ity of pixels into one or more regions further comprises using
an RGB image of the scene captured using the image sensor
array.

In some implementations, determining that a first region of
the one or more regions corresponds to a specific material
comprises determining that the first region is substantially a
quadrilateral. In some implementations, the first region is
substantially a quadrilateral when a total absolute difference
in area between the first region and the quadrilateral is less
than a threshold percentage of the quadrilateral’s area (e.g.,
5%, 10%, or 20%).

In some implementations, the predefined intensity range
includes all intensity values below a threshold value, and the
specific material is glass. The process thereby determines that
the first region corresponds to a window in the scene.

In some implementations, the process receives a video
stream of the scene from the camera system and reviews the

US 9,235,899 B1

5

video stream to detect movement in the scene. The first region
is excluded from movement detection. The process generates
a motion alert when there is motion detected at the scene
outside of the first region.

In accordance with some implementations, a process iden-
tifies large planar surfaces in scenes, such as floors, walls, and
ceilings. The process is performed at a computing device
having one or more processors and memory. The memory
stores one or more programs configured for execution by the
one or more processors. The process receives a plurality of
captured IR images of a scene taken by a 2-dimensional array
of image sensors of a camera system. Each IR image is
captured when a distinct subset of IR illuminators of the
camera system are illuminated. The process constructs a
depth map of a scene using the plurality of IR images, and
uses the depth map to compute a binary depth edge map for
the scene. The binary depth edge map identifies which points
in the depth map comprise depth discontinuities. The process
identifies a plurality of contiguous components based on the
binary depth edge map. The process determines that a first
component of the plurality of contiguous components repre-
sents a large planar surface in the scene by fitting a plane to
points in the first component, determining the orientation of
the plane, and determining that the plane fitting residual error
is less than a predefined threshold.

In some implementations, the nature of the large plane is
determined by its orientation. When the orientation of the
plane is upwards, the plane is determined to be a floor. When
the orientation of the plane is downwards, the plane is deter-
mined to be a ceiling. And when the orientation of the plane is
horizontal, the plane is determined to be a wall.

In some implementations, the computing device is a server
distinct from the camera system. In other implementations,
the computing device is included in the camera system.

In some implementations, the image sensors are parti-
tioned into a plurality of pixels. For each pixel, the process
uses the captured IR images to form a respective vector of
light intensity at the respective pixel and estimates a depth in
the first scene at the respective pixel using the respective
vector and a respective lookup table. In this way, the process
constructs the depth map.

In accordance with some implementations, a process
recomputes zones for a scene. The process is performed at a
computing device that has one or more processors and
memory. The memory stores one or more programs config-
ured for execution by the one or more processors. The process
receives a first RGB image of a scene taken by a 2-dimen-
sional array of image sensors of a camera system at a first
time. The process also receives a first plurality of distinct IR
images of the scene taken by the array of image sensors
temporally proximate to the first time. Each of the IR images
is taken while a different subset of IR illuminators of the
camera system is emitting light. Using the first plurality of IR
images, the process constructs a first depth map of the scene.
The first depth map indicates a respective depth in the scene
ata plurality of pixels, where each pixel corresponds to one or
more of the image sensors. The process receives designation
from a user of a zone within the first RGB image. The zone
corresponds to a contiguous plurality of pixels. At a second
time later, the process receives a second plurality of distinct
IR images of the scene taken by the array of image sensors.
Each of the IR images in the second plurality is taken while a
different subset of IR illuminators of the camera system is
emitting light. Using the second plurality of IR images, the
process constructs a second depth map of the scene. The
process then determines physical movement of the camera
system based on the first and second depth maps. Based on the

10

15

20

25

30

35

40

45

50

55

60

65

6

determined physical movement, the process translates the
zone in the first RGB image into an adjusted zone.

In some instances, the determined physical movement is an
angular rotation. In some instances, the determined physical
movement is a lateral displacement. In some instances, the
determined physical movement includes both an angular
rotation and a lateral displacement. Lateral displacements are
commonly horizontal, but they can be vertical as well. As
used herein, a lateral displacement is any movement in which
the camera continues to point in the same direction. This
includes any combination of left/right, up/down, and/or for-
ward/backward.

In some implementations, determining the physical move-
ment of the camera system includes identifying a plurality of
points in the first depth map and a corresponding plurality of
points in the second depth map and the process determines a
respective displacement for each of the points between the
first and second depth maps.

In some instances, the zone is a first quadrilateral. In some
instances, the adjusted zone is a second quadrilateral, and a
first edge of the first quadrilateral has a length that is different
from a corresponding second edge of the second quadrilat-
eral.

In some implementations, the process creates the first
depth map of the scene by partitioning the image sensors into
a plurality of pixels. For each pixel, the process forms a
respective vector of the received IR images at the respective
pixel and estimates a depth in the scene at the respective pixel
by looking up the respective vector in a respective lookup
table.

In some implementations, the computing device is a server
distinct from the camera system. In other implementations,
the computing device is included in the camera system.

In some implementations, the process receives a second
RGB image of the scene taken by the image sensor array of
the camera system temporally proximate to the second time
and correlates the adjusted zone to a set of pixels from the
second RGB image.

In some implementations, the process determines the
physical movement of the camera system using point clouds.
The process forms a first point cloud using a first plurality of
points from the first depth map and forms a second point
cloud using a second plurality of points from the second depth
map. The process then computes a minimal transformation
that aligns the first point cloud with the second point cloud.
This process is referred to as “registration.”

In accordance with some implementations, a process esti-
mates the height and tilt angle of a camera system. The cam-
era system has a 2-dimensional array of image sensors and a
plurality of IR illuminators in fixed locations relative to the
array of image sensors. The process is performed at a com-
puting device having one or more processors and memory.
The memory stores one or more programs configured for
execution by the one or more processors. In some implemen-
tations, the computing device is included in the camera sys-
tem. In some implementations, the computing device is a
server distinct from the camera system. The process identifies
a plurality of distinct subsets of the IR illuminators. In some
implementations, each of the distinct subsets of the IR illu-
minators comprises two adjacent IR illuminators, and the
distinct subsets of the IR illuminators are non-overlapping. In
some implementations, one or more of the subsets of IR
illuminators comprises a single IR illuminator. The process
partitions the image sensors into a plurality of pixels. In some
implementations, each pixel corresponds to a single image
sensor. In some implementations, some of the pixels corre-
spond to multiple image sensors (e.g., by downsampling).

US 9,235,899 B1

7

In accordance with some implementations, for each of a
plurality of heights and tilt angles, the process constructs a
dictionary entry that corresponds to the camera system hav-
ing the respective height and tilt angle above a floor. The
respective dictionary entry includes respective IR light inten-
sity values for pixels in images corresponding to activating
individually each of the distinct subsets of the IR illumina-
tors.

In some implementations, the constructed dictionary
entries are based on simulating the camera, the floor, and the
images, and computing expected IR light intensity values for
pixels in the simulated images. In some implementations,
each expected IR light intensity value is based on character-
istics of the IR illuminators, including one or more charac-
teristics selected from the group consisting of lux, orientation
of the IR illuminators relative to the array of image sensors,
and location of the IR illuminators relative to the array of
image sensors. In some implementations, a respective dictio-
nary entry for a respective height and respective tilt angle is
based on measuring IR light intensity values of actual images
captured by the camera having the respective height and
respective tilt angle with respect to an actual floor.

In accordance with some implementations, for each of the
plurality of distinct subsets of the IR illuminators, the process
receives a captured IR image of a scene taken by the array of
image sensors while the respective subset of the IR illumina-
tors are emitting IR light and the IR illuminators not in the
respective subset are not emitting IR light. Using at least one
of'the captured IR images, the process identifies a floor region
corresponding to a floor in the scene. In some implementa-
tions, identifying the floor region includes constructing a
depth map of the scene using the captured IR images, identi-
fying a region bounded by depth discontinuities, and deter-
mining that the region is substantially planar and facing
upwards.

In accordance with some implementations, the process
forms a vector (sometimes referred to as a feature vector)
including pixels from the captured IR images in the identified
floor region and estimates the camera height and camera tilt
angle relative to the floor by comparing the feature vector to
the dictionary entries.

In some implementations, the respective expected IR light
intensity is based on characteristics of the IR illuminators. In
some implementations, these characteristics include one or
more of: illuminator lux; orientation of the IR illuminators
relative to the array of image sensors; and location of the IR
illuminators relative to the array of image sensors.

In some implementations, constructing a dictionary entry
includes normalizing the dictionary entry. In some imple-
mentations, normalizing a dictionary entry includes deter-
mining a respective total magnitude of the light intensity
features in the dictionary entry and dividing each component
of the dictionary entry by the respective total magnitude. In
some implementations, the dictionary entries are downloaded
to the camera system from the computing device during an
initialization process.

In some implementations, the process receives a baseline
IR image of the scene captured by the array of image sensors
while none of the IR illuminators are emitting IR light and
subtracts the light intensity at each pixel of the baseline IR
image from the light intensity at the corresponding pixel of
each of the other captured IR images.

In some implementations, estimating the camera height
and camera tilt angle relative to the floor includes computing
a respective distance between the feature vector and respec-
tive dictionary entries. The process selects a first dictionary
entry whose corresponding computed distance is less than the

20

25

35

40

45

55

8

other computed distances and estimates the camera height
and tilt angle to be the height and tilt angle associated with the
first dictionary entry. In some implementations, computing a
respective distance between the feature vector and respective
dictionary entries comprises computing a Euclidean distance
that uses only vector components corresponding to pixels in
the identified floor region. In some implementations, the pro-
cess normalizes the feature vector and the dictionary entries
prior to computing the distances.

In accordance with some implementations, a process
reduces false positive security alerts. The process is per-
formed at a computing device having one or more processors,
and memory storing one or more programs configured for
execution by the one or more processors. In some implemen-
tations, the computing device is a server distinct from a video
camera. In some implementations, the computing device is
included in the video camera. The process computes a depth
map for a scene monitored by a video camera using a plurality
of IR images captured by the video camera and uses the depth
map to identify a first region within the scene having histori-
cally above average false positive detected motion events.
The process monitors a video stream provided by the video
camera to identify motion events. The monitored area
excludes the first region. The process generates a motion alert
when there is detected motion in the scene outside of the first
region and the detected motion satisfies threshold criteria. In
some implementations, satisfying the threshold criteria
includes detecting movement of an object in the scene, and
the detected movement exceeds a predefined distance within
a predefined period of time. In some implementations, satis-
fying the threshold criteria includes detecting movement for
an object that exceeds a predefined size. In some implemen-
tations, satisfying the threshold criteria includes detecting
simultaneous movement of two or more objects in the scene.

In some implementations, the video camera has a plurality
of IR illuminators and each of the plurality of IR images
captured by the video camera is taken when a different subset
of the illuminators is emitting light.

In some instances, the first region is identified as a ceiling.
In some implementations, identifying the first region as a
ceiling includes using the depth map to compute a binary
depth edge map for the scene. The binary depth edge map
identifies which points in the depth map comprise depth dis-
continuities. In some implementations, identifying the first
region as a ceiling also includes identifying a contiguous
component based on the binary depth edge map. In some
implementations, identifying the first region as a ceiling also
includes fitting a plane to points in the contiguous component,
determining that the plane fitting residual error is less than a
predefined threshold, and determining that the plane is ori-
ented downward.

In some instances, the first region is identified as a window.
In some implementations, identifying the first region as a
window includes identifying the first region as a region of low
light intensity within a captured IR image of the scene, fitting
the first region with a quadrilateral, and determining that the
absolute difference between the first region and the quadri-
lateral is less than a threshold percentage of the area of the
quadrilateral.

In some instances, the first region is identified as a televi-
sion.

In accordance with some implementations, process for
generating depth maps is performed by a camera having a
plurality of illuminators, a lens assembly, an image sensing
element, a processor, and memory. The illuminators are con-
figured to operate in a first mode to provide illumination using
all of the illuminators, the lens assembly is configured to

US 9,235,899 B1

9

focus incident light on the image sensing element, the
memory is configured to store image data from the image
sensing element, and the processor is configured to execute
programs to control operation of the camera. The process
reconfigures the plurality of illuminators to operate in a sec-
ond mode, where each of a plurality of subsets of the plurality
of illuminators provides illumination separately from other
subsets of the plurality of illuminators. The process sequen-
tially activates each of the subsets of the illuminators to illu-
minate a scene and receives reflected illumination from the
illuminated scene incident on the lens assembly and focused
onto the image sensing element. The process measures light
intensity values of the received reflected illumination at the
image sensing element and stores to the memory the mea-
sured light intensity values associated with activation of each
of the subsets.

In some implementations, each of the subsets of illumina-
tors is configured at a different angle relative to the image
sensing element.

In some implementations, each of the subsets of illumina-
tors highlights a different portion of the scene.

In some implementations, the process transmits the stored
light intensity values to a depth mapping module configured
to estimate spatial depths of objects in the scene based on the
stored light intensity values, predetermined illumination
specifications of the illuminators, and response specifications
of the image sensors.

In some implementations, the illuminators are IR illumi-
nators.

In some implementations, the illuminators comprise 8 IR
illuminators and each of the subsets of the illuminators com-
prises 2 adjacent IR illuminators.

In some implementations, the image sensing element is a
2-dimensional array of image sensors.

In some implementations, differences in the stored light
intensity values associated with activation of each of the
subsets for a respective image sensor correlate with spatial
depth of an object in the scene from which reflected light was
received at the respective image sensor.

In some implementations, the process captures a baseline
image while none of the illuminators are emitting light. The
captured baseline image measures ambient light intensity of
the scene at each of the image sensors. The process stores the
captured baseline image to the memory and for each image
sensor, the process subtracts the baseline intensity value from
the stored intensity values for the respective image sensor to
correct the stored intensity values for ambient light at the
scene.

In some implementations, the image sensors are parti-
tioned into a plurality of pixels and for each pixel of the
plurality of pixels the process using the captured IR images to
form a respective vector of light intensity at the respective
pixel. For each pixel, the process also estimates a depth in the
first scene at the respective pixel by looking up the respective
vector in a respective lookup table. In some implementations,
looking up the respective vector in the respective lookup table
includes computing an inner product of the respective vector
with records in the lookup table and determining the depth in
the first scene at the pixel as a depth corresponding to a record
in the lookup table whose inner product with the respective
vector is greatest among the computed inner products for the
respective vector. In some implementations, computing an
inner product of the respective vector with records in the
lookup table includes computing an inner product of the
respective vector and the respective record for each record in
the respective lookup table. In some implementations, the
respective vector for a respective pixel has a plurality of

25

30

40

45

10

components, each of the components corresponds to a respec-
tive IR light intensity for the respective pixel for a respective
captured IR image, and computing an inner product com-
prises computing a dot product.

In some implementations, each respective lookup table
includes a plurality of normalized IR light intensity vectors,
each normalized light intensity vector corresponds to a
respective depth in the first scene.

In some implementations, the respective lookup table is
downloaded to the camera system from a remote server dur-
ing an initialization process.

In accordance with some implementations, a computing
device has one or more processors, memory, and one or more
programs stored in the memory. The programs are configured
for execution by the one or more processors. The one or more
programs including instructions for performing any of the
processes described herein. In some implementations, the
computing device is a server, which is distinct from a camera
system. In other implementations, the computing device
includes a camera.

In accordance with some implementations, a non-transi-
tory computer readable storage medium stores one or more
programs configured for execution by a computing device
having one or more processors and memory. The one or more
programs include instructions for performing any of the pro-
cesses described herein. In some implementations, the com-
puting device is a server, which is distinct from a camera
system. In other implementations, the computing device
includes a camera.

Thus, computing devices, server systems, and camera sys-
tems are provided with more efficient methods forutilizing IR
emitters and a sensor array to classify objects in a scene or
simplify creation of alerts. These disclosed camera systems
thereby increase the effectiveness, efficiency, and user satis-
faction with such systems. Such methods may complement or
replace conventional methods.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the various described imple-
mentations, reference should be made to the Description of
Implementations below, in conjunction with the following
drawings in which like reference numerals refer to corre-
sponding parts throughout the figures.

FIG. 1 is a representative smart home environment in
accordance with some implementations.

FIG. 2 is a block diagram illustrating a representative net-
work architecture that includes a smart home network in
accordance with some implementations.

FIG. 3 illustrates a network-level view of an extensible
platform for devices and services, which may be integrated
with the smart home environment of FIG. 1 in accordance
with some implementations.

FIG. 4 illustrates an abstracted functional view of the
extensible platform of FIG. 3, with reference to a processing
engine as well as devices of the smart home environment, in
accordance with some implementations.

FIG. 5 is a representative operating environment in which
a video server system interacts with client devices and video
sources in accordance with some implementations.

FIG. 6 is a block diagram illustrating a representative video
server system in accordance with some implementations.

FIG. 7 is ablock diagram illustrating a representative client
device in accordance with some implementations.

FIG. 8 is ablock diagram illustrating a representative video
capturing device (e.g., a camera) in accordance with some
implementations.

US 9,235,899 B1

11

FIG. 9 is a block diagram of a scene understanding server
in accordance with some implementations.

FIGS. 10-12 illustrate the illuminators and array of
memory sensors for acamera in accordance with some imple-
mentations.

FIGS. 13,14, 15A, and 15B illustrate a process of building
a lookup table for depth estimation in accordance with some
implementations.

FIGS. 16A-16D, 17A, and 178 illustrate a process of cre-
ating a depth map using a sequence of captured IR images in
accordance with some implementations.

FIGS. 18A-18E illustrate a process for identifying objects
in a scene based on specularity, in accordance with some
implementations.

FIGS. 19A-191 illustrate a process of zone recalculation in
accordance with some implementations.

FIGS. 20A-20K illustrate a process of identifying floors,
walls, and ceilings in a scene in accordance with some imple-
mentations.

FIGS. 21A-21E illustrate a process of estimating camera
pose in accordance with some implementations.

FIGS. 22A-22C provide a flowchart of a process for build-
ing a lookup table in accordance with some implementations.

FIGS. 23A-23C provide a flowchart of a process for using
a lookup table to build a depth map of a scene in accordance
with some implementations.

FIGS. 24A-24C provide a flowchart of a process for iden-
tifying objects, such as windows, based on specularity, in
accordance with some implementations.

FIGS. 25A-25B provide a flowchart of a process for iden-
tifying floors, walls, ceilings, and other large planar surfaces
in accordance with some implementations.

FIGS. 26A-26C provide a flowchart of a process for cor-
recting user identified zones when a camera is moved accord-
ing to some implementations.

FIGS. 27A-27D provide a flowchart of a process for esti-
mating camera pose in accordance with some implementa-
tions.

FIGS. 28-30 provide an overview of some of the processes
described, and provide an overview of how the processes
work together according to some implementations.

FIGS. 31A-31E illustrate how some implementations
address movement of a camera.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DESCRIPTION OF IMPLEMENTATIONS

Security cameras typically include illuminators so that
video capture is possible even in low light conditions or in
complete darkness. Many such cameras use infrared (IR)
illuminators, which allow video capture without illuminating
a scene with visible light. Typically, when illumination is
needed, all of the illuminators are turned on.

Disclosed implementations utilize existing illuminators in
different ways so that the camera can provide more informa-
tion about a scene. One step in some implementations is to
control the illuminators individually or in small groups rather
than turning them all on or off together. Because the illumi-
nators are in different locations with respect to the image
sensor array, captured images are slightly different depending
on which illuminators are on, as illustrated below in FIGS.
16A-16D.

As described below, some implementations build a depth
map of a scene using the differences in captured images when
different illuminators are on. A depth map estimates the dis-
tance between the image sensor array of the camera and the

20

25

35

40

45

12

nearest object for each pixel in the field of vision of the
camera. In some implementations, the depth map is imple-
mented as an mxn matrix of depths, where mxn is the arrange-
ment of pixels corresponding to image sensor array.

In some implementations, there is a one-to-one correspon-
dence between pixels and individual image sensors in the
array, but in many implementations the images are down-
sampled to create a more manageable set of pixels (e.g.,
10,000 pixels instead of 1,000,000 pixels).

A depth map can be used in various ways to determine
information about a scene. In some implementations, the
depth map is used to help identify floors, walls, and ceilings.
In some implementations, the depth map helps to identify
when a camera has moved slightly, enabling automatic zone
correction for previously defined zones in the scene. In some
implementations, the depth map helps to identify the position
of'the camera (e.g., height above the floor and angle). These
features provide useful information, and also allow for more
accurate alerts. For example, if a region is identified as a
ceiling, perceiving “movement” in that region is likely to be
light reflections instead of an intruder. As another example,
automatic zone correction can ensure that the proper region is
monitored (e.g., a doorway) even if the zone is in a different
location relative to a new camera position (e.g., because the
camera was bumped).

Some implementations also enable detection of windows
using characteristics of windows that are different from other
objects. For example, whereas light incident on most objects
scatters in all directions, light incident on a window either
passes through the window or reflects off like a mirror. Iden-
tifying windows can be useful in various ways, including the
prevention of false alerts. For example, movement of leaves
on a tree outside of a window does not constitute an intruder
inside a monitored room with the window.

These features may be implemented for an independent
camera, but in some implementations, the camera is part of a
smart home environment 100, as described below in FIGS.
1-8.

Video-based surveillance and security monitoring of a pre-
mises generates a continuous video feed that may last hours,
days, and even months. Although motion-based recording
triggers can help trim down the amount of video data that is
actually recorded, there are a number of drawbacks associ-
ated with video recording triggers based on simple motion
detection in the live video feed. For example, when motion
detection is used as a trigger for recording a video segment,
the threshold of motion detection must be set appropriately
for the scene of the video; otherwise, the recorded video may
include many video segments containing trivial movements
(e.g., lighting change, leaves moving in the wind, shifting of
shadows due to changes in sunlight exposure, etc.) that are of
no significance to a reviewer. On the other hand, if the motion
detection threshold is set too high, video data on important
movements that are too small to trigger the recording may be
irreversibly lost. Furthermore, at a location with many routine
movements (e.g., cars passing through in front of a window)
or constant movements (e.g., a scene with a running fountain,
ariver, etc.), recording triggers based on motion detection are
rendered ineffective, because motion detection can no longer
accurately select out portions of the live video feed that are of
special significance. As a result, a human reviewer has to sift
through a large amount of recorded video data to identify a
small number of motion events after rejecting a large number
of routine movements, trivial movements, and movements
that are of no interest for a present purpose.

Due to at least the challenges described above, it is desir-
able to have a method that maintains a continuous recording

US 9,235,899 B1

13

of a live video feed such that irreversible loss of video data is
avoided and, at the same time, augments simple motion detec-
tion with false positive suppression and motion event catego-
rization. The false positive suppression techniques help to
downgrade motion events associated with trivial movements
and constant movements. The motion event categorization
techniques help to create category-based filters for selecting
only the types of motion events that are of interest for a
present purpose. As a result, the reviewing burden on the
reviewer may be reduced. In addition, as the present purpose
of'the reviewer changes in the future, the reviewer can simply
choose to review other types of motion events by selecting the
appropriate motion categories as event filters.

In addition, in some implementations, event categories can
also beused as filters for real-time notifications and alerts. For
example, when a new motion event is detected in a live video
feed, the new motion event is immediately categorized, and if
the event category of the newly detected mention event is a
category of interest selected by a reviewer, a real-time noti-
fication or alert can be sent to the reviewer regarding the
newly detected motion event. In addition, if the new event is
detected in the live video feed as the reviewer is viewing a
timeline of the video feed, the event indicator and the notifi-
cation of the new event will have an appearance or display
characteristic associated with the event category.

Furthermore, the types of motion events occurring at dif-
ferent locations and settings can vary greatly, and there are
many event categories for all motion events collected at the
video server system (e.g., the video server system 508).
Therefore, it may be undesirable to have a set of fixed event
categories from the outset to categorize motion events
detected in all video feeds from all camera locations for all
users. In some implementations, the motion event categories
for the video stream from each camera are gradually estab-
lished through machine learning, and are thus tailored to the
particular setting and use of the video camera.

In addition, in some implementations, as new event catego-
ries are gradually discovered based on clustering of past
motion events, the event indicators for the past events in a
newly discovered event category are refreshed to reflect the
newly discovered event category. In some implementations, a
clustering algorithm automatically phases out old, inactive,
and/or sparse categories when categorizing motion events. As
acamera changes location, event categories that are no longer
active are gradually retired without manual input to keep the
motion event categorization model current. In some imple-
mentations, user input to edit the assignment of past motion
events into respective event categories is also taken into
account for future event category assignment and new cat-
egory creation.

In some circumstances, there are multiple objects moving
simultaneously within the scene of a video feed. In some
implementations, the motion track associated with each mov-
ing object corresponds to a respective motion event candi-
date, such that the movement of the different objects in the
same scene may be assigned to different motion event cat-
egories.

In general, motion events may occur in different regions of
a scene at different times. Out of all the motion events
detected within a scene of a video stream over time, a
reviewer may only be interested in motion events that occur
within or enter a particular zone of interest in the scene. In
addition, the zones of interest may not be known to the
reviewer and/or the video server system until long after one or
more motion events of interest have occurred within the zones
of interest. For example, a parent may not be interested in
activities centered around a cookie jar until after some cook-

25

35

40

45

50

55

60

65

14

ies have mysteriously disappeared. Furthermore, the zones of
interest in the scene of a video feed can vary for a reviewer
over time depending on the present purpose of the reviewer.
For example, the parent may be interested in seeing all activi-
ties that occurred around the cookie jar one day when some
cookies are missing, and the parent may be interested in
seeing all activities that occurred around a mailbox the next
day when some expected mail is missing. Accordingly, in
some implementations, the techniques disclosed herein allow
a reviewer to define and create one or more zones of interest
within a static scene of a video feed, and then use the created
zones of interest to retroactively identify all past motion
events (or all motion events within a particular past time
window) that have touched or entered the zones of interest. In
some implementations, the identified motion events are pre-
sented to the user in a timeline or in a list. In some implemen-
tations, real-time alerts for any new motion events that touch
or enter the zones of interest are sent to the reviewer. The
ability to quickly identify and retrieve past motion events that
are associated with a newly created zone of interest addresses
the drawbacks of conventional zone monitoring techniques.
Conventionally, the zones of interest must be defined first
based on a certain degree of guessing and anticipation that
may later prove to be inadequate or wrong. Also, in conven-
tional systems, only future events (as opposed to both past and
future events) within the zones of interest can be identified.

In some implementations, when detecting new motion
events that have touched or entered some zone(s) of interest,
the event detection is based on the motion information col-
lected from the entire scene, rather than just within the
zone(s) of interest. In particular, aspects of motion detection,
motion object definition, motion track identification, false
positive suppression, and event categorization are all based
on image information collected from the entire scene, rather
than just within each zone of interest. As a result, context
around the zones of interest is taken into account when moni-
toring events within the zones of interest. Thus, the accuracy
of event detection and categorization may be improved as
compared to conventional zone monitoring techniques that
perform all calculations with image data collected only
within the zones of interest.

FIGS. 1-4 provide an overview of exemplary smart home
device networks and capabilities. FIGS. 5-8 provide a
description of the systems and devices participating in the
video monitoring.

Reference will now be made in detail to implementations,
examples of which are illustrated in the accompanying draw-
ings. In the following detailed description, numerous specific
details are set forth in order to provide a thorough understand-
ing of the various described implementations. However, it
will be apparent to one of ordinary skill in the art that the
various described implementations may be practiced without
these specific details. In other instances, well-known meth-
ods, procedures, components, circuits, and networks have not
been described in detail so as not to unnecessarily obscure
aspects of the implementations.

FIG. 1 depicts a representative smart home environment in
accordance with some implementations. The smart home
environment 100 includes a structure 150, which may be a
house, office building, garage, or mobile home. It will be
appreciated that devices may also be integrated into a smart
home environment 100 that does not include an entire struc-
ture 150, such as an apartment, condominium, or office space.
Further, the smart home environment may control and/or be
coupled to devices outside of the actual structure 150. Indeed,
several devices in the smart home environment need not be
physically within the structure 150. For example, a device

US 9,235,899 B1

15

controlling a pool heater 114 or irrigation system 116 may be
located outside of structure 150.

The depicted structure 150 includes a plurality of rooms
152, separated at least partly from each other via walls 154.
The walls 154 may include interior walls or exterior walls.
Each room may further include a floor 156 and a ceiling 158.
Devices may be mounted on, integrated with, and/or sup-
ported by a wall 154, a floor 156, or a ceiling 158.

In some implementations, the smart home environment
100 includes a plurality of devices, including intelligent,
multi-sensing, network-connected devices, that integrate
seamlessly with each other in a smart home network 202
and/or with a central server or a cloud-computing system to
provide a variety of useful smart home functions. The smart
home environment 100 may include one or more intelligent,
multi-sensing, network-connected thermostats 102 (“smart
thermostats™), one or more intelligent, network-connected,
multi-sensing hazard detection units 104 (“smart hazard
detectors™), and one or more intelligent, multi-sensing, net-
work-connected entryway interface devices 106 (“smart
doorbells™). In some implementations, the smart thermostat
102 detects ambient climate characteristics (e.g., temperature
and/or humidity) and controls a HVAC system 103 accord-
ingly. The smart hazard detector 104 may detect the presence
of a hazardous substance or a substance indicative of a haz-
ardous substance (e.g., smoke, fire, and/or carbon monoxide).
The smart doorbell 106 may detect a person’s approach to or
departure from a location (e.g., an outer door), control door-
bell functionality, announce a person’s approach or departure
via audio or visual means, and/or control settings on a secu-
rity system (e.g., to activate or deactivate the security system
when occupants go and come).

In some implementations, the smart home environment
100 includes one or more intelligent, multi-sensing, network-
connected wall switches 108 (“smart wall switches™), along
with one or more intelligent, multi-sensing, network-con-
nected wall plug interfaces 110 (“smart wall plugs™). The
smart wall switches 108 may detect ambient lighting condi-
tions, detect room-occupancy states, and control a power
and/or dim state of one or more lights. In some instances,
smart wall switches 108 may also control a power state or
speed of a fan, such as a ceiling fan. The smart wall plugs 110
may detect occupancy of a room or enclosure and control
supply of power to one or more wall plugs (e.g., such that
power is not supplied to the plug if nobody is at home).

In some implementations, the smart home environment
100 includes a plurality of intelligent, multi-sensing, net-
work-connected appliances 112 (“smart appliances™), such as
refrigerators, stoves, ovens, televisions, washers, dryers,
lights, stereos, intercom systems, garage-door openers, floor
fans, ceiling fans, wall air conditioners, pool heaters, irriga-
tion systems, security systems, space heaters, window AC
units, motorized duct vents, and so forth. In some implemen-
tations, when plugged in, an appliance may announce itself to
the smart home network, such as by indicating what type of
appliance it is, and it may automatically integrate with the
controls of the smart home. Such communication by the
appliance to the smart home may be facilitated by either a
wired or wireless communication protocol. The smart home
may also include a variety of non-communicating legacy
appliances 140, such as old conventional washer/dryers,
refrigerators, and the like, which may be controlled by smart
wall plugs 110. The smart home environment 100 may further
include a variety of partially communicating legacy appli-
ances 142, such as infrared (“IR”) controlled wall air condi-
tioners or other IR-controlled devices, which may be con-

10

15

20

25

30

35

40

45

50

55

60

65

16
trolled by IR signals provided by the smart hazard detectors
104 or the smart wall switches 108.

In some implementations, the smart home environment
100 includes one or more network-connected cameras 118
that are configured to provide video monitoring and security
in the smart home environment 100.

The smart home environment 100 may also include com-
munication with devices outside of the physical home but
within a proximate geographical range of the home. For
example, the smart home environment 100 may include a
pool heater monitor 114 that communicates a current pool
temperature to other devices within the smart home environ-
ment 100 and/or receives commands for controlling the pool
temperature. Similarly, the smart home environment 100 may
include an irrigation monitor 116 that communicates infor-
mation regarding irrigation systems within the smart home
environment 100 and/or receives control information for con-
trolling such irrigation systems.

By virtue of network connectivity, one or more of the smart
home devices may further allow a user to interact with the
device even if the user is not proximate to the device. For
example, a user may communicate with a device using a
computer (e.g., a desktop computer, laptop computer, or tab-
let) or other portable electronic device (e.g., a smartphone)
166. A webpage or application may be configured to receive
communications from the user and control the device based
on the communications and/or to present information about
the device’s operation to the user. For example, the user may
view a current set point temperature for a device and adjust it
using a computer. The user may be in the structure during this
remote communication or outside the structure.

As discussed above, users may control the smart thermo-
stat and other smart devices in the smart home environment
100 using a network-connected computer or portable elec-
tronic device 166. In some examples, some or all of the
occupants (e.g., individuals who live in the home) may reg-
ister their devices 166 with the smart home environment 100.
Such registration may be made at a central server to authen-
ticate the occupant and/or the device as being associated with
the home and to give permission to the occupant to use the
device to control the smart devices in the home. Occupants
may use their registered devices 166 to remotely control the
smart devices of the home, such as when an occupant is at
work or on vacation. The occupant may also use a registered
device to control the smart devices when the occupant is
actually located inside the home, such as when the occupant
is sitting on a couch inside the home. It should be appreciated
that instead of or in addition to registering the devices 166, the
smart home environment 100 may make inferences about
which individuals live in the home and are therefore occu-
pants and which devices 166 are associated with those indi-
viduals. As such, the smart home environment may “learn”
who is an occupant and permit the devices 166 associated
with those individuals to control the smart devices of the
home.

In some implementations, in addition to containing pro-
cessing and sensing capabilities, the devices 102, 104, 106,
108, 110,112,114, 116, and/or 118 (“the smart devices™) are
capable of data communications and information sharing
with other smart devices, a central server or cloud-computing
system, and/or other devices that are network-connected. The
required data communications may be carried out using any
of a variety of custom or standard wireless protocols (IEEE
802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Blue-
tooth Smart, [ISA100.11a, WirelessHART, MiWj, etc.) and/or

US 9,235,899 B1

17

any of a variety of custom or standard wired protocols (CAT6
Ethernet, HomePlug, etc.), or any other suitable communica-
tion protocol.

In some implementations, the smart devices serve as wire-
less or wired repeaters. For example, a first one of the smart
devices communicates with a second one of the smart devices
via a wireless router. The smart devices may further commu-
nicate with each other via a connection to one or more net-
works 162 such as the Internet. Through the one or more
networks 162, the smart devices may communicate with a
smart home provider server system 164 (also called a central
server system and/or a cloud-computing system herein). In
some implementations, the smart home provider server sys-
tem 164 may include multiple server systems, each dedicated
to data processing associated with a respective subset of the
smart devices (e.g., a video server system may be dedicated to
data processing associated with camera(s) 118). The smart
home provider server system 164 may be associated with a
manufacturer, support entity, or service provider associated
with the smart device. In some implementations, a user is able
to contact customer support using a smart device itself rather
than needing to use other communication means, such as a
telephone or Internet-connected computer. In some imple-
mentations, software updates are automatically sent from the
smart home provider server system 164 to smart devices (e.g.,
when available, when purchased, or at routine intervals).

FIG. 2 is a block diagram illustrating a representative net-
work architecture 200 that includes a smart home network
202 in accordance with some implementations. In some
implementations, one or more smart devices 204 in the smart
home environment 100 (e.g., the devices 102, 104, 106, 108,
110, 112, 114, 116, and/or 118) combine to create a mesh
network in the smart home network 202. In some implemen-
tations, the one or more smart devices 204 in the smart home
network 202 operate as a smart home controller. In some
implementations, a smart home controller has more comput-
ing power than other smart devices. In some implementa-
tions, a smart home controller processes inputs (e.g., from the
smart device(s) 204, the electronic device 166, and/or the
smart home provider server system 164) and sends com-
mands (e.g., to the smart device(s) 204 in the smart home
network 202) to control operation of the smart home environ-
ment 100. In some implementations, some of the smart de-
vice(s) 204 in the mesh network are “spokesman” nodes (e.g.,
node 204-1) and others are “low-powered” nodes (e.g., node
204-9). Some of the smart device(s) 204 in the smart home
environment 100 are battery powered, while others have a
regular and reliable power source, such as by connecting to
wiring (e.g., to 120V line voltage wires) behind the walls 154
of the smart home environment. The smart devices that have
aregular and reliable power source are referred to as “spokes-
man” nodes. These nodes are typically equipped with the
capability of using a wireless protocol to facilitate bidirec-
tional communication with a variety of other devices in the
smart home environment 100, as well as with the central
server or cloud-computing system 164. In some implemen-
tations, one or more “spokesman” nodes operate as a smart
home controller. On the other hand, the devices that are bat-
tery powered are referred to as “low-power” nodes. These
nodes tend to be smaller than spokesman nodes and typically
only communicate using wireless protocols that require very
little power, such as Zigbee, 6LoOWPAN, etc.

In some implementations, some low-power nodes are inca-
pable of bidirectional communication. These low-power
nodes send messages, but they are unable to “listen”. Thus,

10

15

20

25

30

35

40

45

50

55

60

65

18

other devices in the smart home environment 100, such as the
spokesman nodes, cannot send information to these low-
power nodes.

As described, the spokesman nodes and some of the low-
powered nodes are capable of “listening.” Accordingly, users,
other devices, and/or the central server or cloud-computing
system 164 may communicate control commands to the low-
powered nodes. For example, a user may use the portable
electronic device 166 (e.g., a smartphone) to send commands
over the Internet to the central server or cloud-computing
system 164, which then relays the commands to one or more
spokesman nodes in the smart home network 202. The
spokesman nodes drop down to a low-power protocol to
communicate the commands to the low-power nodes
throughout the smart home network 202, as well as to other
spokesman nodes that did not receive the commands directly
from the central server or cloud-computing system 164.

In some implementations, a smart nightlight 170 is a low-
power node. In addition to housing a light source, the smart
nightlight 170 houses an occupancy sensor, such as an ultra-
sonic or passive IR sensor, and an ambient light sensor, such
as a photo resistor or a single-pixel sensor that measures light
in the room. In some implementations, the smart nightlight
170 is configured to activate the light source when its ambient
light sensor detects that the room is dark and when its occu-
pancy sensor detects that someone is in the room. In other
implementations, the smart nightlight 170 is simply config-
ured to activate the light source when its ambient light sensor
detects that the room is dark. Further, in some implementa-
tions, the smart nightlight 170 includes a low-power wireless
communication chip (e.g., a ZigBee chip) that regularly sends
out messages regarding the occupancy of the room and the
amount of light in the room, including instantaneous mes-
sages coincident with the occupancy sensor detecting the
presence of a person in the room. As mentioned above, these
messages may be sent wirelessly, using the mesh network,
from node to node (i.e., smart device to smart device) within
the smart home network 202 as well as over the one or more
networks 162 to the central server or cloud-computing system
164.

Other examples of low-power nodes include battery-oper-
ated versions of the smart hazard detectors 104. These smart
hazard detectors 104 are often located in an area without
access to constant and reliable power and may include any
number and type of sensors, such as smoke/fire/heat sensors,
carbon monoxide/dioxide sensors, occupancy/motion sen-
sors, ambient light sensors, temperature sensors, humidity
sensors, and the like. Furthermore, the smart hazard detectors
104 may send messages that correspond to each of the respec-
tive sensors to the other devices and/or the central server or
cloud-computing system 164, such as by using the mesh
network as described above.

Examples of spokesman nodes include smart doorbells
106, smart thermostats 102, smart wall switches 108, and
smart wall plugs 110. These devices 102, 106, 108, and 110
are often located near and connected to a reliable power
source, and therefore may include more power-consuming
components, such as one or more communication chips
capable of bidirectional communication in a variety of pro-
tocols.

In some implementations, the smart home environment
100 includes service robots 168 that are configured to carry
out, in an autonomous manner, any of a variety of household
tasks.

FIG. 3 illustrates a network-level view of an extensible
devices and services platform 300 with which the smart home
environment 100 of FIG. 1 is integrated, in accordance with

US 9,235,899 B1

19

some implementations. The extensible devices and services
platform 300 includes remote servers or cloud computing
system 164. FEach of the intelligent, network-connected
devices 102,104,106, 108, 110,112,114, 116, and 118 from
FIG. 1 (identified simply as “devices” in FIGS. 2-4) may
communicate with the remote servers or cloud computing
system 164. For example, a connection to the one or more
networks 162 may be established either directly (e.g., using
3G/4G connectivity to a wireless carrier), or through a net-
work interface 160 (e.g., a router, switch, gateway, hub, or an
intelligent, dedicated whole-home control node), or through
any combination thereof.

In some implementations, the devices and services plat-
form 300 communicates with and collects data from the smart
devices of the smart home environment 100. In addition, in
some implementations, the devices and services platform 300
communicates with and collects data from a plurality of smart
home environments across the world. For example, the smart
home provider server system 164 collects home data 302
from the devices of one or more smart home environments,
where the devices may routinely transmit home data or may
transmit home data in specific instances (e.g., when a device
queries the home data 302). Example collected home data 302
includes, without limitation, power consumption data, occu-
pancy data, HVAC settings and usage data, carbon monoxide
levels data, carbon dioxide levels data, volatile organic com-
pounds levels data, sleeping schedule data, cooking schedule
data, inside and outside temperature and humidity data, tele-
vision viewership data, inside and outside noise level data,
pressure data, video data, etc.

In some implementations, the smart home provider server
system 164 provides one or more services 304 to smart
homes. Example services 304 include, without limitation,
software updates, customer support, sensor data collection/
logging, remote access, remote or distributed control, and/or
use suggestions (e.g., based on the collected home data 302)
to improve performance, reduce utility cost, increase safety,
etc. In some implementations, data associated with the ser-
vices 304 is stored at the smart home provider server system
164, and the smart home provider server system 164 retrieves
and transmits the data at appropriate times (e.g., at regular
intervals, upon receiving a request from a user, etc.).

In some implementations, the extensible devices and the
services platform 300 includes a processing engine 306,
which may be concentrated at a single server or distributed
among several different computing entities. In some imple-
mentations, the processing engine 306 includes engines con-
figured to receive data from the devices of smart home envi-
ronments (e.g., via the Internet and/or a network interface), to
index the data, to analyze the data and/or to generate statistics
based on the analysis or as part of the analysis. In some
implementations, the analyzed data is stored as derived home
data 308.

Results of the analysis or statistics may thereafter be trans-
mitted back to the device that provided home data used to
derive the results, to other devices, to a server providing a
webpage to a user of the device, or to other non-smart device
entities. In some implementations, use statistics, use statistics
relative to use of other devices, use patterns, and/or statistics
summarizing sensor readings are generated by the processing
engine 306 and transmitted. The results or statistics may be
provided via the one or more networks 162. In this manner,
the processing engine 306 may be configured and pro-
grammed to derive a variety of useful information from the
home data 302. A single server may include one or more
processing engines.

10

15

20

25

30

35

40

45

50

55

60

65

20

The derived home data 308 may be used at different granu-
larities for a variety of useful purposes, ranging from explicit
programmed control of the devices on a per-home, per-neigh-
borhood, or per-region basis (for example, demand-response
programs for electrical utilities), to the generation of inferen-
tial abstractions that may assist on a per-home basis (for
example, an inference may be drawn that the homeowner has
left for vacation and so security detection equipment may be
put on heightened sensitivity), to the generation of statistics
and associated inferential abstractions that may be used for
government or charitable purposes. For example, processing
engine 306 may generate statistics about device usage across
apopulation of devices and send the statistics to device users,
service providers or other entities (e.g., entities that have
requested the statistics and/or entities that have provided
monetary compensation for the statistics).

In some implementations, to encourage innovation and
research and to increase products and services available to
users, the devices and services platform 300 exposes a range
of application programming interfaces (APIs) 310 to third
parties, such as charities 314, governmental entities 316 (e.g.,
the Food and Drug Administration or the Environmental Pro-
tection Agency), academic institutions 318 (e.g., university
researchers), businesses 320 (e.g., providing device warran-
ties or service to related equipment, targeting advertisements
based on home data), utility companies 324, and other third
parties. The APIs 310 are coupled to and permit third-party
systems to communicate with the smart home provider server
system 164, including the services 304, the processing engine
306, the home data 302, and the derived home data 308. In
some implementations, the APIs 310 allow applications
executed by the third parties to initiate specific data process-
ing tasks that are executed by the smart home provider server
system 164, as well as to receive dynamic updates to the home
data 302 and the derived home data 308.

For example, third parties may develop programs and/or
applications, such as web applications or mobile applications,
that integrate with the smart home provider server system 164
to provide services and information to users. Such programs
and applications may be, for example, designed to help users
reduce energy consumption, to preemptively service faulty
equipment, to prepare for high service demands, to track past
service performance, etc., and/or to perform other beneficial
functions or tasks.

FIG. 4 illustrates an abstracted functional view 400 of the
extensible devices and services platform 300 of FIG. 3, with
reference to a processing engine 306 as well as devices of the
smart home environment, in accordance with some imple-
mentations. Even though devices situated in smart home envi-
ronments will have a wide variety of different individual
capabilities and limitations, the devices may be thought of as
sharing common characteristics in that each device is a data
consumer 402 (DC), a data source 404 (DS), a services con-
sumer 406 (SC), and a services source 408 (SS). Advanta-
geously, in addition to providing control information used by
the devices to achieve their local and immediate objectives,
the extensible devices and services platform 300 may also be
configured to use the large amount of data that is generated by
these devices. In addition to enhancing or optimizing the
actual operation of the devices themselves with respect to
theirimmediate functions, the extensible devices and services
platform 300 may be directed to “repurpose” that data in a
variety of automated, extensible, flexible, and/or scalable
ways to achieve a variety of useful objectives. These objec-
tives may be predefined or adaptively identified based on,
e.g., usage patterns, device efficiency, and/or user input (e.g.,
requesting specific functionality).

US 9,235,899 B1

21

FIG. 4 shows the processing engine 306 as including a
number of processing paradigms 410. In some implementa-
tions, the processing engine 306 includes a managed services
paradigm 410qa that monitors and manages primary or sec-
ondary device functions. The device functions may include
ensuring proper operation of a device given user inputs, esti-
mating that (e.g., and responding to an instance in which) an
intruder is or is attempting to be in a dwelling, detecting a
failure of equipment coupled to the device (e.g., a light bulb
having burned out), implementing or otherwise responding to
energy demand response events, and/or alerting a user of a
current or predicted future event or characteristic. In some
implementations, the processing engine 306 includes an
advertising/communication paradigm 4105 that estimates
characteristics (e.g., demographic information), desires and/
or products of interest of a user based on device usage. Ser-
vices, promotions, products or upgrades may then be offered
or automatically provided to the user. In some implementa-
tions, the processing engine 306 includes a social paradigm
410c¢ that uses information from a social network, provides
information to a social network (for example, based on device
usage), and/or processes data associated with user and/or
device interactions with the social network platform. For
example, a user’s status as reported to trusted contacts on the
social network may be updated to indicate when the user is
home based on light detection, security system inactivation or
device usage detectors. As another example, a user may be
able to share device-usage statistics with other users. In yet
another example, a user may share HVAC settings that result
in low power bills and other users may download the HVAC
settings to their smart thermostat 102 to reduce their power
bills.

In some implementations, the processing engine 306
includes a challenges/rules/compliance/rewards paradigm
410d that informs a user of challenges, competitions, rules,
compliance regulations and/or rewards and/or that uses
operation data to determine whether a challenge has been
met, a rule or regulation has been complied with and/or a
reward has been earned. The challenges, rules, and/or regu-
lations may relate to efforts to conserve energy, to live safely
(e.g., reducing exposure to toxins or carcinogens), to con-
serve money and/or equipment life, to improve health, etc.
For example, one challenge may involve participants turning
down their thermostat by one degree for one week. Those
participants that successfully complete the challenge are
rewarded, such as with coupons, virtual currency, status, etc.
Regarding compliance, an example involves a rental-property
owner making a rule that no renters are permitted to access
certain owner’s rooms. The devices in the room having occu-
pancy sensors may send updates to the owner when the room
is accessed.

In some implementations, the processing engine 306 inte-
grates or otherwise uses extrinsic information 412 from
extrinsic sources to improve the functioning of one or more
processing paradigms. The extrinsic information 412 may be
used to interpret data received from a device, to determine a
characteristic of the environment near the device (e.g., out-
side a structure that the device is enclosed in), to determine
services or products available to the user, to identify a social
network or social-network information, to determine contact
information of entities (e.g., public-service entities such as an
emergency-response team, the police or a hospital) near the
device, to identify statistical or environmental conditions,
trends or other information associated with a home or neigh-
borhood, and so forth.

FIG. 5 illustrates a representative operating environment
500 in which a video server system 508 provides data pro-

10

15

20

25

30

35

40

45

50

55

60

65

22

cessing for monitoring and facilitating review of motion
events in video streams captured by video cameras 118. As
shown in FIG. 5, the video server system 508 receives video
data from video sources 522 (including cameras 118) located
at various physical locations (e.g., inside homes, restaurants,
stores, streets, parking lots, and/or the smart home environ-
ments 100 of FIG. 1). Each video source 522 may be bound to
one or more reviewer accounts, and the video server system
508 provides video monitoring data for the video source 522
to client devices 504 associated with the reviewer accounts.
For example, the portable electronic device 166 is an example
of the client device 504.

In some implementations, the smart home provider server
system 164 or a component thereof serves as the video server
system 508. In some implementations, the video server sys-
tem 508 is a dedicated video processing server that provides
video processing services to video sources and client devices
504 independent of other services provided by the video
server system 508.

In some implementations, each of the video sources 522
includes one or more video cameras 118 that capture video
and send the captured video to the video server system 508
substantially in real-time. In some implementations, each of
the video sources 522 includes a controller device (not
shown) that serves as an intermediary between the one or
more cameras 118 and the video server system 508. The
controller device receives the video data from the one or more
cameras 118, optionally performs some preliminary process-
ing on the video data, and sends the video data to the video
server system 508 on behalf of the one or more cameras 118
substantially in real-time. In some implementations, each
camera has its own on-board processing capabilities to per-
form some preliminary processing on the captured video data
before sending the processed video data (along with metadata
obtained through the preliminary processing) to the controller
device and/or the video server system 508.

As shown in FIG. 5, in accordance with some implemen-
tations, each of the client devices 504 includes a client-side
module 502. The client-side module 502 communicates with
a server-side module 506 executed on the video server system
508 through the one or more networks 162. The client-side
module 502 provides client-side functionality for the event
monitoring and review processing and communications with
the server-side module 506. The server-side module 506 pro-
vides server-side functionality for event monitoring and
review processing for any number of client-side modules 502
each residing on a respective client device 504. The server-
side module 506 also provides server-side functionality for
video processing and camera control for any number of the
video sources 522, including any number of control devices
and the cameras 118.

In some implementations, the server-side module 506
includes one or more processors 512, a video storage database
514, an account database 516, an I/O interface to one or more
client devices 518, and an I/O interface to one or more video
sources 520. The /O interface to one or more clients 518
facilitates the client-facing input and output processing for
the server-side module 506. The account database 516 stores
a plurality of profiles for reviewer accounts registered with
the video processing server, where a respective user profile
includes account credentials for a respective reviewer
account, and one or more video sources linked to the respec-
tive reviewer account. The I/O interface to one or more video
sources 520 facilitates communications with one or more
video sources 522 (e.g., groups of one or more cameras 118
and associated controller devices). The video storage data-
base 514 stores raw video data received from the video

US 9,235,899 B1

23

sources 522, as well as various types of metadata, such as
motion events, event categories, event category models, event
filters, and event masks, for use in data processing for event
monitoring and review for each reviewer account.

Examples of a representative client device 504 include a
handheld computer, a wearable computing device, a personal
digital assistant (PDA), a tablet computer, a laptop computer,
a desktop computer, a cellular telephone, a smart phone, an
enhanced general packet radio service (EGPRS) mobile
phone, a media player, a navigation device, a game console, a
television, a remote control, a point-of-sale (POS) terminal, a
vehicle-mounted computer, an ebook reader, or a combina-
tion of any two or more of these data processing devices or
other data processing devices.

Examples of the one or more networks 162 include local
area networks (LAN) and wide area networks (WAN) such as
the Internet. The one or more networks 162 are implemented
using any known network protocol, including various wired
or wireless protocols, such as Ethernet, Universal Serial Bus
(USB), FIREWIRE, Long Term Evolution (LTE), Global
System for Mobile Communications (GSM), Enhanced Data
GSM Environment (EDGE), code division multiple access
(CDMA), time division multiple access (IDMA), Bluetooth,
Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any
other suitable communication protocol.

In some implementations, the video server system 508 is
implemented on one or more standalone data processing
apparatuses or a distributed network of computers. In some
implementations, the video server system 508 also employs
various virtual devices and/or services of third party service
providers (e.g., third-party cloud service providers) to pro-
vide the underlying computing resources and/or infrastruc-
ture resources of the video server system 508. In some imple-
mentations, the video server system 508 includes, but is not
limited to, a handheld computer, a tablet computer, a laptop
computer, a desktop computer, or a combination of any two or
more of these data processing devices or other data process-
ing devices.

The server-client environment 500 shown in FIG. 5
includes both a client-side portion (e.g., the client-side mod-
ule 502) and a server-side portion (e.g., the server-side mod-
ule 506). The division of functionality between the client and
server portions of operating environment 500 can vary in
different implementations. Similarly, the division of func-
tionality between a video source 522 and the video server
system 508 can vary in different implementations. For
example, in some implementations, the client-side module
502 is a thin-client that provides only user-facing input and
output processing functions, and delegates all other data pro-
cessing functionality to a backend server (e.g., the video
server system 508). Similarly, in some implementations, a
respective one of the video sources 522 is a simple video
capturing device that continuously captures and streams
video data to the video server system 508 with limited or no
local preliminary processing on the video data. Although
many aspects of the present technology are described from
the perspective of the video server system 508, the corre-
sponding actions performed by a client device 504 and/or the
video sources 522 would be apparent to one of skill in the art.
Similarly, some aspects of the present technology may be
described from the perspective of a client device or a video
source, and the corresponding actions performed by the video
server would be apparent to one of skill in the art. Further-
more, some aspects of the present technology may be per-
formed by the video server system 508, a client device 504,
and a video sources 522 cooperatively.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 6 is a block diagram illustrating a video server system
508 in accordance with some implementations. The video
server system 508 typically includes one or more processing
units (CPUs) 512, one or more network interfaces 604 (e.g.,
including the I/O interface to one or more clients 504 and the
1/O interface to one or more video sources 522), memory 606,
and one or more communication buses 608 for interconnect-
ing these components (sometimes called a chipset). The
memory 606 includes high-speed random access memory,
such as DRAM, SRAM, DDR RAM, or other random access
solid state memory devices. In some implementations, the
memory 606 includes non-volatile memory, such as one or
more magnetic disk storage devices, one or more optical disk
storage devices, one or more flash memory devices, or one or
more other non-volatile solid state storage devices. In some
implementations, the memory 606 includes one or more stor-
age devices remotely located from the one or more processing
units 512. The memory 606, or alternatively the non-volatile
memory within the memory 606, comprises a non-transitory
computer readable storage medium. In some implementa-
tions, the memory 606, or the non-transitory computer read-
able storage medium of the memory 606, stores the following
programs, modules, and data structures, or a subset or super-
set thereof:

an operating system 610, including procedures for han-
dling various basic system services and for performing
hardware dependent tasks;

a network communication module 612 for connecting the
video server system 508 to other computing devices
(e.g., the client devices 504 and the video sources 522
including camera(s) 118) connected to the one or more
networks 162 via the one or more network interfaces 604
(wired or wireless);

a server-side module 506, which provides server-side data
processing and functionality for the event monitoring
and review, including but not limited to:
an account administration module 614 for creating

reviewer accounts, performing camera registration
processing to establish associations between video
sources to their respective reviewer accounts, and pro-
viding account login-services to the client devices
504,

a video data receiving module 616 for receiving raw
video data from the video sources 522, and preparing
the received video data for event processing and long-
term storage in the video storage database 514;

acamera control module 618 for generating and sending
server-initiated control commands to modify the
operation modes of the video sources, and/or receiv-
ing and forwarding user-initiated control commands
to modify the operation modes of the video sources
522,

an event detection module 620 for detecting motion
event candidates in video streams from each of the
video sources 522, including motion track identifica-
tion, false positive suppression, and event mask gen-
eration and caching;

an event categorization module 622 for categorizing
motion events detected in received video streams;

a zone creation module 624 for generating zones of
interest in accordance with user input;

a person identification module 626 for identifying char-
acteristics associated with the presence of humans in
the received video streams;

a filter application module 628 for selecting event filters
(e.g., event categories, zones of interest, a human

US 9,235,899 B1

25

filter, etc.) and applying the selected event filters to
past and new motion events detected in the video
streams;

a zone monitoring module 630 for monitoring motion
within selected zones of interest and generating noti-
fications for new motion events detected within the
selected zones of interest, where the zone monitoring
takes into account changes in the surrounding context
of the zones and is not confined within the selected
zones of interest;

a real-time motion event presentation module 632 for
dynamically changing characteristics of event indica-
tors displayed in user interfaces as new event filters,
such as new event categories or new zones of interest,
and for providing real-time notifications as new
motion events are detected in the video streams; and

an event post-processing module 634 for providing sum-
mary time-lapse for past motion events detected in
video streams, and providing event and category edit-
ing functions to users for revising past event catego-
rization results; and

server data 636, which includes data for use in data pro-

cessing of motion event monitoring and review. In some

implementations, this includes one or more of:

a video storage database 514 storing raw video data
associated with each of the video sources 522 (each
including one or more cameras 118) of each reviewer
account, as well as event categorization models (e.g.,
event clusters, categorization criteria, etc.), event cat-
egorization results (e.g., recognized event categories,
and assignment of past motion events to the recog-
nized event categories, representative events for each
recognized event category, etc.), event masks for past
motion events, video segments for each past motion
event, preview video (e.g., sprites) of past motion
events, and other relevant metadata (e.g., names of
event categories, locations of the cameras 118, cre-
ation time, duration, DTPZ settings of the cameras
118, etc.) associated with the motion events; and

an account database 516 for storing account information
for reviewer accounts, including login-credentials,
associated video sources, relevant user and hardware
characteristics (e.g., service tier, camera model, stor-
age capacity, processing capabilities, etc.), user inter-
face settings, monitoring preferences, etc.

Each of the above identified elements may be stored in one
or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function
described above. The above identified modules or programs
(i.e., sets of instructions) need not be implemented as separate
software programs, procedures, or modules, and thus various
subsets of these modules may be combined or otherwise
re-arranged in various implementations. In some implemen-
tations, the memory 606 stores a subset of the modules and
data structures identified above. In some implementations,
the memory 606 stores additional modules and data structures
not described above.

FIG. 7 is ablock diagram illustrating a representative client
device 504 associated with a reviewer account in accordance
with some implementations. The client device 504 typically
includes one or more processing units (CPUs) 702, one or
more network interfaces 704, memory 706, and one or more
communication buses 708 for interconnecting these compo-
nents (sometimes called a chipset). The client device 504 also
includes a user interface 710. The user interface 710 includes
one or more output devices 712 that enable presentation of
media content, including one or more speakers and/or one or

10

25

35

40

45

65

26

more visual displays. The user interface 710 also includes one
or more input devices 714, including user interface compo-
nents that facilitate user input such as a keyboard, a mouse, a
voice-command input unit or microphone, a touch screen
display, a touch-sensitive input pad, a gesture capturing cam-
era, or other input buttons or controls. Furthermore, the client
device 504 optionally uses a microphone and voice recogni-
tion or a camera and gesture recognition to supplement or
replace the keyboard. In some implementations, the client
device 504 includes one or more cameras, scanners, or photo
sensor units for capturing images. In some implementations,
the client device 504 includes a location detection device 715,
such as a GPS (global positioning satellite) or other geo-
location receiver, for determining the location of the client
device 504.

The memory 706 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM, or other ran-
dom access solid state memory devices. In some implemen-
tations, the memory 706 includes non-volatile memory, such
as one or more magnetic disk storage devices, one or more
optical disk storage devices, one or more flash memory
devices, or one or more other non-volatile solid state storage
devices. In some implementations, the memory 706 includes
one or more storage devices remotely located from the one or
more processing units 702. The memory 706, or alternatively
the non-volatile memory within the memory 706, comprises
a non-transitory computer readable storage medium. In some
implementations, the memory 706, or the non-transitory
computer readable storage medium of memory 706, stores the
following programs, modules, and data structures, or a subset
or superset thereof:

an operating system 716, which includes procedures for
handling various basic system services and for perform-
ing hardware dependent tasks;

a network communication module 718 for connecting the
client device 504 to other computing devices (e.g., the
video server system 508 and the video sources 522)
connected to the one or more networks 162 via the one or
more network interfaces 704 (wired or wireless);

a presentation module 720 for enabling presentation of
information (e.g., user interfaces for application(s) 726
or the client-side module 502, widgets, websites and
web pages thereof, and/or games, audio and/or video
content, text, etc.) at the client device 504 via the one or
more output devices 712 (e.g., displays, speakers, etc.)
associated with the user interface 710;

an input processing module 722 for detecting one or more
user inputs or interactions from one of the one or more
input devices 714 and interpreting the detected input or
interaction;

aweb browser module 724 for navigating, requesting (e.g.,
via HTTP), and displaying websites and web pages
thereof, including a web interface for logging into a
reviewer account, controlling the video sources associ-
ated with the reviewer account, establishing and select-
ing event filters, and editing and reviewing motion
events detected in the video streams of the video
sources;

one or more applications 726 for execution by the client
device 504 (e.g., games, social network applications,
smart home applications, and/or other web or non-web
based applications);

a client-side module 502, which provides client-side data
processing and functionality for monitoring and review-
ing motion events detected in the video streams of one or
more video sources, including but not limited to:

US 9,235,899 B1

27

an account registration module 728 for establishing a
reviewer account and registering one or more video
sources with the video server system 508;

a camera setup module 730 for setting up one or more
video sources within a local area network, and
enabling the one or more video sources to access the
video server system 508 on the Internet through the
local area network;

a camera control module 732 for generating control
commands for modifying an operating mode of the
one or more video sources in accordance with user
input;

an event review interface module 734 for providing user
interfaces for reviewing event timelines, editing event
categorization results, selecting event filters, present-
ing real-time filtered motion events based on existing
and newly created event filters (e.g., event categories,
zones of interest, a human filter, etc.), presenting real-
time notifications (e.g., pop-ups) for newly detected
motion events, and presenting smart time-lapse of
selected motion events;

a zone creation module 736 for providing a user inter-
face for creating zones of interest for each video
stream in accordance with user input, and sending the
definitions of the zones of interest to the video server
system 508; and

a notification module 738 for generating real-time noti-
fications for all or selected motion events on the client
device 504 outside of the event review user interface;
and

client data 770 storing data associated with the reviewer

account and the video sources 522, including, but not

limited to:

account data 772, which includes information related to
the reviewer account, and the video sources, such as
cached login credentials, camera characteristics, user
interface settings, display preferences, etc.

Each of the above identified elements may be stored in one
or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function
described above. The above identified modules or programs
(i.e., sets of instructions) need not be implemented as separate
software programs, procedures, modules or data structures,
and thus various subsets of these modules may be combined
orotherwise re-arranged in various implementations. In some
implementations, the memory 706 stores a subset of the mod-
ules and data structures identified above. In some implemen-
tations, the memory 706 stores additional modules and data
structures not described above.

In some implementations, at least some of the functions of
the video server system 508 are performed by the client
device 504, and the corresponding sub-modules of these
functions may be located within the client device 504 rather
than the video server system 508. In some implementations,
at least some of the functions of the client device 504 are
performed by the video server system 508, and the corre-
sponding sub-modules of these functions may be located
within the video server system 508 rather than the client
device 504. The client device 504 and the video server system
508 shown in FIGS. 6-7, respectively, are merely illustrative,
and different configurations of the modules for implementing
the functions described herein are possible in various imple-
mentations.

FIG. 8 is a block diagram illustrating a representative cam-
era system 118 in accordance with some implementations.
Sometimes the camera system 118 is referred to herein as a
“camera” 118. In some implementations, the camera system

20

25

30

35

40

45

55

65

28

118 includes one or more processing units 802 (e.g., CPUs,
ASICs, FPGAs, or microprocessors), one or more communi-
cation interfaces 804, memory 806, and one or more commu-
nication buses 808 for interconnecting these components
(sometimes called a chipset). In some implementations, the
camera 118 includes one or more input devices 810 such as
one or more buttons for receiving input and one or more
microphones. In some implementations, the camera 118
includes one or more output devices 812 such as one or more
indicator lights, a sound card, a speaker, a small display for
displaying textual information and error codes, etc. In some
implementations, the camera 118 includes a location detec-
tion device 814, such as a GPS (global positioning satellite) or
other geo-location receiver, for determining the location of
the camera 118.

As illustrated in FIGS. 10-12 below, the camera includes a
sensor array 852 that captures video images, and a plurality of
illuminators 856, which illuminate a scene when there is
insufficient ambient light. Typically, the illuminators emit
infrared (IR) light. In some implementations, the camera 118
includes one or more optional sensors 854, such as a proxim-
ity sensor, a motion detector, an accelerometer, or a gyro-
scope.

In some implementations, the camera includes one or more
radios 850. The radios 850 enable radio communication net-
works in the smart home environment and allow the camera
118 to communicate wirelessly with smart devices using one
or more of the communication interfaces 804. In some imple-
mentations, the radios 850 are capable of data communica-
tions using any of a variety of custom or standard wireless
protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN,
Thread, Z-Wave, Bluetooth Smart, ISA100.11a, Wire-
lessHART, MiWi, etc.), custom or standard wired protocols
(e.g., Ethernet, HomePlug, etc.), and/or any other suitable
communication protocol.

The communication interfaces 804 include, for example,
hardware capable of data communications (e.g., with home
computing devices, network servers, etc.), using any of a
variety of custom or standard wireless protocols (e.g., IEEE
802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Blue-
tooth Smart, [ISA100.11a, WirelessHART, MiWj, etc.) and/or
any of a variety of custom or standard wired protocols (e.g.,
Ethernet, HomePlug, USB, etc.), or any other suitable com-
munication protocol.

The memory 806 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM, or other ran-
dom access solid state memory devices. In some implemen-
tations, the memory 806 includes non-volatile memory, such
as one or more magnetic disk storage devices, one or more
optical disk storage devices, one or more flash memory
devices, or one or more other non-volatile solid state storage
devices. The memory 806, or alternatively the non-volatile
memory within the memory 806, comprises a non-transitory
computer readable storage medium. In some implementa-
tions, the memory 806, or the non-transitory computer read-
able storage medium of the memory 806, stores the following
programs, modules, and data structures, or a subset or super-
set thereof:

an operating system 816, which includes procedures for

handling various basic system services and for perform-
ing hardware dependent tasks;

anetwork communication module 818, which connects the

camera 118 to other computing devices (e.g., the video
server system 508, a client device 504, network routing
devices, one or more controller devices, and networked

US 9,235,899 B1

29

storage devices) connected to the one or more networks
162 via the one or more communication interfaces 804
(wired or wireless);
a video control module 820, which modifies the operation
mode (e.g., zoom level, resolution, frame rate, recording
and playback volume, lighting adjustment, AE and IR
modes, etc.) of the camera 118, enabling/disabling the
audio and/or video recording functions of the camera
118, changing the pan and tilt angles of the camera 118,
resetting the camera 118, and so on;
a video capturing module 824, which captures and gener-
ates a video stream. In some implementations, the video
capturing module sends the video stream to the video
server system 508 as a continuous feed or in short bursts;
a video caching module 826, which stores some or all
captured video data locally at one or more local storage
devices (e.g., memory, flash drives, internal hard disks,
portable disks, etc.);
a local video processing module 828, which performs pre-
liminary processing of the captured video data locally at
the camera 118. For example, in some implementations,
the local video processing module 828 compresses and
encrypts the captured video data for network transmis-
sion, performs preliminary motion event detection, per-
forms preliminary false positive suppression for motion
event detection, and/or performs preliminary motion
vector generation;
camera data 830, which in some implementations includes
one or more of:
camera settings 832, including network settings, camera
operation settings, camera storage settings, etc.; and

video data 834, including video segments and motion
vectors for detected motion event candidates to be
sent to the video server system 508.

an illumination module 860, which controls the illumina-
tors 856. In some implementations, the illumination
module 860 identifies low-light conditions and turns on
illuminators as needed. In some implementations, the
illumination module controls the illuminators 856 indi-
vidually. Some implementations store one or more illu-
mination patterns, which are used when the illumination
module is used by the depth mapping module 878;

an image capture module 862, which uses the image sensor
array 852 to capture images. In some implementations,
the image capture module 852 can capture either IR
images 864 or RGB images 866. Typically, the camera
118 is capable of capturing both still images as well as
video streams;

alookup table generation module 868, which uses captured
images 872 to generate lookup tables 874, as illustrated
in FIGS. 13, 14, 15A, and 15B. The lookup tables are
subsequently used by the depth mapping module 878 to
construct depth maps 876 of a scene. In some implemen-
tations, the lookup table generation module 868 includes
a normalization module 880, which is used to normalize
the vectors in the lookup tables;

one or more databases 870, which store various data used
by the camera 118. In some implementations, the data-
base stores captured images 872, including IR images
864 and/or RGB images 866. In some implementations,
the image capture module 862 stores captured IR images
864 and RGB images 866 temporarily (e.g., in volatile
memory) before being stored more permanently in the
database 870. In some implementations, the database
870 stores lookup tables 874, which are used by the
depth mapping module to generate depth maps 876. In

10

15

20

25

30

35

40

45

50

55

60

65

30

some implementations, the computed depth maps 876
are also stored in the database 870; and

a depth mapping module 878, which uses the lookup tables

874 to build one or more depth maps 876 as described
below with respect to FIGS. 16 A-16D, 17A, and 17B.

Each of the above identified elements may be stored in one
or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function
described above. The above identified modules or programs
(i.e., sets of instructions) need not be implemented as separate
software programs, procedures, or modules, and thus various
subsets of these modules may be combined or otherwise
re-arranged in various implementations. In some implemen-
tations, the memory 806 stores a subset of the modules and
data structures identified above. In some implementations,
the memory 806 stores additional modules and data structures
not described above.

In some implementations, at least some of the functions of
the camera 118 are performed by a client device 504, the
server system 508, and/or one or more smart devices 204, and
the corresponding sub-modules of these functions may be
located within the client device 504, the server system 508,
and/or smart devices 204, rather than the camera 118. Simi-
larly, in some implementations, at least some of the functions
of the client device, the server system, and/or smart devices
are performed by the camera 118, and the corresponding
sub-modules of these functions may be located within the
camera 118. For example, in some implementations, a camera
118 captures an IR image of an illuminated scene (e.g., using
the illumination module 860 and the image capture module
862), while a server system 508 stores the captured images
(e.g., in the video storage database 514) and creates a depth
map 876 based on the captured images (e.g., performed by a
depth mapping module 878 stored in the memory 606). The
server system 508, the client device 504, and the camera 118,
shown in FIGS. 6-8 are merely illustrative, and different
configurations of the modules for implementing the functions
described herein are possible in various implementations.

FIG. 91s ablock diagram illustrating a scene understanding
server 900. A scene understanding server 900 is commonly
part of a video server system 508. In some implementations,
the functionality of a scene understanding server 900 is
included with other functionality provided by a video server
system. A scene understanding server 900 may be one or
more physically separate computing devices, or may be incor-
porated into a server that provides other functionality as well.

A scene understanding server 900 typically includes one or
more processing units (CPUs) 902 for executing modules,
programs, or instructions stored in the memory 914 and
thereby performing processing operations; one or more net-
work or other communications interfaces 904; memory 914;
and one or more communication buses 912 for interconnect-
ing these components. The communication buses 912 may
include circuitry (sometimes called a chipset) that intercon-
nects and controls communications between system compo-
nents. In some implementations, the server 900 includes a
user interface 906, which may include a display device 908
and one or more input devices 910, such as a keyboard and a
mouse.

In some implementations, the memory 914 includes high-
speed random access memory, such as DRAM, SRAM, DDR
RAM or other random access solid state memory devices. In
some implementations, the memory 914 includes non-vola-
tile memory, such as one or more magnetic disk storage
devices, optical disk storage devices, flash memory devices,
or other non-volatile solid state storage devices. In some
implementations, the memory 914 includes one or more stor-

US 9,235,899 B1

31

age devices remotely located from the CPU(s) 902. The
memory 914, or alternately the non-volatile memory de-
vice(s) within the memory 914, comprises a non-transitory
computer readable storage medium. In some implementa-
tions, the memory 914, or the computer readable storage
medium of memory 914, stores the following programs, mod-
ules, and data structures, or a subset thereof:

an operating system 916, which includes procedures for
handling various basic system services and for perform-
ing hardware dependent tasks;

a communications module 918, which is used for connect-
ing the server 900 to other computers via the one or more
communication network interfaces 904 (wired or wire-
less) and communication networks 162, such as the
Internet, other wide area networks, local area networks,
metropolitan area networks, and so on;

a display module 920, which receives input from one or
more input devices 910, and generates user interface
elements for display on a display device 908;

a lookup table generation module 868, as described above
in FIG. 8 with respect to a camera 118. In some imple-
mentations, the lookup table generation module
includes a normalization module 880;

a depth mapping module 878, as described above in FIG. 8
with respect to a camera 118;

one or more object classifiers 922, which classify objects in
the field of vision of a camera 118. Some implementa-
tions include a window detection module 924, which
identifies regions of a scene as probable windows. The
window detection module 924 is described below with
respect to FIGS. 18A-18E. Some implementations
include a floor/wall/ceiling module 926, which identi-
fies regions of a scene as floors, walls, and ceilings. The
floor/wall/ceiling module 926 is described below with
respect to FIGS. 20A-20K, 25A, and 25B. In some
implementations, the floor/wall/ceiling module 926 uses
a depth map constructed by the depth mapping module
878 as described below with respect to FIGS. 16 A-16D,
17A, 17B, and 23A-23C. In some implementations, the
floor/wall/ceiling module 926 uses the depth map to
construct an x-direction depth gradient G, 940 and a
y-direction gradient G, 942, and uses these to construct
a depth edge map 944. In some implementations, the
floor/wall/ceiling module 926 uses the depth edge map
944 to identify closed components 946, as illustrated in
FIG. 20F below. For each of these components, some
implementations fit a plane 948, as illustrated below
with respect to FIGS. 20H-201J. If the fitted plane 948 is
a good fit and is facing in the proper direction, it is
identified as a probable floor, wall, or ceiling. This is
described below with respect to FIGS. 20A-20K, 25A,
and 25B. Some implementations have classifiers in addi-
tion to the window and floor classifiers 924 and 926;

some implementations include a zone correction module
928, which uses depth maps generated at different times
to determine if the camera 118 has moved. If a user has
set up zones of interest in the scene, the zone correction
module 928 is able to use the original zone definition
together with the computed camera movement to deter-
mine an adjusted definition of the zone based on the new
camera position. This is described below with respect to
FIGS. 19A-191. In some implementations, the zone cor-
rection module creates point clouds 930 using the depth
maps, and computes a transformation that maps the first
point cloud to the second point cloud;

some implementations include a camera pose estimator
932, which estimates the position of the camera 118 with

10

15

20

25

30

35

40

45

50

55

60

65

32

respect to the room in which it is located. In some imple-
mentations, the camera position includes the estimated
height of the camera 118 (i.e., the height of the image
sensor array) as well as the angle of altitude. In some
implementations, an angle of zero represents a camera
that is pointed exactly horizontal (e.g., parallel to the
floor), with positive angles when the camera is pointing
down and negative angles when the camera is pointing
up. One of skill in the art recognizes that alternative
coordinate systems can be used as well, such as a refer-
ence angle of 0 representing a camera 118 pointing
directly down and a reference angle of 180 pointing
directly up. The operation of the camera pose estimator
is described below with respect to FIGS. 21A-21E; and
one or more databases 870, which store captured images
872, lookup tables 874, and/or depth maps 876, as
described above in FIG. 8 with respect to a camera 118.
In some implementations, the captured images 872
include both RGB images 934 and IR images 936.

Each of the above identified elements may be stored in one
or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function
described above. The above identified modules or programs
(i.e., sets of instructions) need not be implemented as separate
software programs, procedures, or modules, and thus various
subsets of these modules may be combined or otherwise
re-arranged in various implementations. In some implemen-
tations, the memory 914 stores a subset of the modules and
data structures identified above. In some implementations,
the memory 914 stores additional modules and data structures
not described above.

In some implementations, at least some of the functions of
the scene understanding server 900 are performed by a client
device 504, the camera 118, or other servers in the video
server system 508. Similarly, in some implementations, at
least some of the functions of the client device 504, the video
server system 508, and the camera 118 are performed by the
scene understanding server 900. For example, in some imple-
mentations, a camera 118 captures an IR image of an illumi-
nated scene (e.g., using the illumination module 860 and the
image capture module 862), while a scene understanding
server 900 stores the captured images 872 and creates one or
more depth maps 876 based on the captured images (e.g.,
performed by a depth mapping module 878).

FIG. 10 provides a front view of a camera 118, in accor-
dance with some implementations. The camera 118 includes
a sensor array 852, a plurality of illuminators 856 (e.g., the
illuminators 856-1 to 856-8), and an enclosure 1010. In this
particular implementation, the array 852 of image sensors
(which are typically photodiodes) is centrally located and
rectangular, but this configuration is not required. An actual
image sensor array 852 typically has a much higher resolution
than shown in the illustration. In this implementation, there
are eight illuminators that are grouped into four pairs, with
one pair for each of: top, bottom, left, and right. In other
implementations, there are more of fewer illuminators, and
the illuminators may be grouped in different ways (or not
grouped at all). In some implementations, the camera 118
includes camera circuitry and/or other camera components
that are not illustrated in this figure.

As described in greater detail below, the illuminators 856
are activated to illuminate a scene by emitting streams of light
(e.g., infrared (IR) light). During illumination, light rays are
scattered by and reflect off of object surfaces in the scene
(e.g., walls, furniture, humans, etc.). Reflected light rays are
then detected by the sensor array 852, which captures an
image of the scene (e.g., and IR image or an RGB image). The

US 9,235,899 B1

33

captured image digitally measures the intensity of the
reflected IR light for each of the pixels in the sensor array 852.

In some implementations, the illuminators 856 are light
emitting diodes (LEDs). In some implementations, the illu-
minators 856 are semiconductor lasers or other semiconduc-
tor light sources. In some implementations, the illuminators
856 are configured to emit light spanning a broad range of the
electromagnetic spectrum, including light in the IR range
(e.g., 700 nm to 1 mm), the visible light range (e.g., 400
nm-700 nm), and/or the ultraviolet range (e.g., 10 nm-400
nm). In some implementations, a portion of the illuminators
856 are configured to emit light in a first range (e.g., IR
range), while other illuminators 856 are configured to emit
light in a second range (e.g., visible light range). In some
implementations, the illuminators 856 are configured to emit
light in accordance with one or more predefined illumination
patterns. For example, in some implementations, the illumi-
nation pattern is circular round-robin in a clockwise order. In
some of these implementations, the round-robin pattern acti-
vates two illuminators at a time, as illustrated in FIG. 14
below. An illumination pattern may specify other parameters
as well, such as the length of time each illuminator is acti-
vated, the output power (e.g., measured in watts), or other
parameters.

The sensor array 852 converts an optical image (e.g.,
reflected light rays) into an electric signal. In some imple-
mentations, the sensor array 852 is a CCD image sensor, a
CMOS sensor, or another type of light sensor device (e.g., a
hybrid of CCD and CMOS). The sensor array 852 includes a
plurality of individual light-sensitive sensors. In some imple-
mentations, the sensors of the sensor array 852 are arranged in
a rectangular grid pattern as illustrated in FIG. 10. Upon
exposure to light, each sensor of the sensor array 852 detects
a measurable and proportional value corresponding to the
light intensity. In some implementations, the sensor array 852
or other camera circuitry converts the measured value (e.g.,
current) into a digital value. In some implementations, the
sensor array 852 or the enclosure 1010 includes an IR filter to
remove wavelengths of incident light that fall outside of a
predefined range. For example, some implementations use an
IR filter that passes only light having wavelengths in the range
of 810 nm to 870 nm. In some implementations, the illumi-
nators 856 emit light at a specified wavelength and the light
reaching the sensor array is filtered to correspond to the
specified wavelength of the illuminators.

In some implementations, the camera 118 includes addi-
tional camera components, such as one or more lenses, image
processors, shutters, and/or other components known to those
skilled in the art of digital photography.

In some implementations, the camera 118 also includes
camera circuitry for coordinating various image capture func-
tionality of the camera 118. In some implementations, the
camera circuitry is coupled to the illuminators 856, to the
sensor array 852, and/or to other camera components, and
coordinates the operational timing of the various camera
device components. In some implementations, when captur-
ing an IR image of a scene, the camera circuitry activates a
subset of the illuminators 856, activates the sensor array 852
to capture the image, and determines an appropriate shutter
speed to manage the image exposure. In some implementa-
tions, the camera circuitry performs basic image processing
of raw images captured by the sensor array 852 during the
exposure. The image processing includes filtering and con-
version of a produced voltage or current at the sensor array
852 into a digital value.

FIG. 11 illustrates just the image sensor array 852 for a
camera 118. In this example, the sensors 1110 in the sensor

10

15

20

25

30

35

40

45

50

55

60

65

34

array 852 are in a rectangular grid of rows and columns. In the
illustration, the rectangular grid is a square, but other imple-
mentations have grids of sensors 1110 that are not square
(e.g., more sensors horizontally than vertically). Also, the
sensors 1110 themselves are not necessarily square. In this
example, the first row consists of a line of sensors 1110, ,,
1110, ,, The sensor in the ith row and jth column is
labeled 1110, ;.

FIG. 12 provides a side view of a camera 118, in accor-
dance with some implementations. The same components of
the camera 118 in FIG. 10 are illustrated in FIG. 12: the
illuminators 856, the sensor array 852, and the enclosure
1010.

In some implementations, one or more illuminators 856 are
angled relative to the planar axis of the sensor array, such as
illuminator 856-1 in FIG. 12. By positioning the illuminators
856 at respective angles (e.g., angle 1210), portions of a scene
will be illuminated at greater or lesser intensities depending
on which of the illuminators 856 are activated and the angles
at which the activated illuminators are positioned. FIGS.
16A-16D illustrate a sequence of IR images with different
illuminators activated. For example, FIG. 16A is an image
captured with the top two illuminators activated, whereas
FIG. 16C is an image captured with the bottom two illumi-
nators activated.

FIGS. 13-15B illustrate a method for generating a lookup
table, which is later used to construct a depth map of a scene
in accordance with some implementations. In some imple-
mentations, a lookup table is constructed for each pixel in the
sensor array based on simulating a surface and computing an
expected intensity of reflected light based on the simulated
surface and a pre-selected illumination pattern. In some
implementations, the physical sensors of the sensor array 852
are grouped together to simulate an array with a smaller
number of pixels. For example, some implementations down-
sample a 1 megapixel array to about 10,000 pixels by group-
ing each 10x10 subarray of sensors into a single down-
sampled pixel. In this example, 100 physical sensors of the
array are treated as a single pixel for purposes of building the
lookup table and subsequently using the lookup table. In the
following description, the term “pixel” will be used to
describe the basic unit for a table lookup (each pixel corre-
sponds to a lookup table) regardless of whether the pixel
corresponds to a single physical sensor in the sensor array or
multiple physical sensors in the sensor array.

To generate a lookup table for a pixel, the lookup table
generation module 868 determines an expected reflected light
intensity at the pixel based on the simulated surfaces 1304
being at various fixed distances 1302 from the pixel. This is

illustrated in FIG. 13, with fixed distances d, 1302-1, d,
1302-2, d; 1302-3, . . ., d,, 1302-m, and surfaces 1304-1,
1304-2,1304-3, . . ., 1304-m. The number of distinct simu-

lated distances 1302 affects the accuracy of the subsequently
estimated depths. In this example, all of the surfaces 1304 are
planar. In other implementations, the surfaces are spherical,
parabolic, cubic, or other appropriate shape. Typically, how-
ever, all of the surfaces are of the same type (e.g., there would
generally not be a mixture of planar and spherical surfaces).
In the simulation, each virtual surface has a constant surface
reflectivity.

For each depth 1302, the illuminators 856 of the camera
118 are simulated to activate in accordance with a pre-defined
illumination pattern. An illumination pattern specifies the
grouping of illuminators 856 (if any), specifies the order the
groups of illuminators are activated, and may specify other
parameters related to the operation of the illuminators. FIG.
14 provides an example in which the illuminators 856 are

US 9,235,899 B1

35

grouped into consecutive pairs in a clockwise orientation and
activated in that order. At a first time 1402-1, the top illumi-
nation group 1404-1 is activated, at a second time 1402-2 a
second illumination group 1404-2 is activated, at a third time
1402-3 a third illumination group 1404-3 is activated, and at
a fourth time 1402-4 a fourth illumination group 1404-4 is
activated. In the example illustrated in FIG. 14, there are four
illumination groups 1404 in the illumination pattern, so there
are four distinct estimated light intensity values.

In some implementations, the estimated light intensity val-
ues are placed into an intensity matrix Y, ; 1506, as illustrated
in FIG. 15A. In this matrix, each column corresponds to one
depth, and each row corresponds to an illumination group
from the illumination pattern. For example, the first column
1500-1 corresponds to a first distance d,. The first light inten-
sity estimate 1501-1 corresponds to the first illumination
group 1404-1, the second light intensity estimate 1502-1
corresponds to the second illumination group 1404-2, the
third light intensity estimate 1503-1 corresponds to the third
illumination group 1404-3, and the fourth light intensity esti-
mate 1504-1 corresponds to the fourth illumination group
1404-4.

The kth column 1500-% in the intensity matrix Y, , 1506 has
four light intensity estimates 1501-%, 1502-%, 1503-k, and
1504-k, corresponding to the same four illumination groups
in the illumination pattern. Finally, the mth column 1500-m
has four list intensity estimates corresponding to the same
four illumination groups in the illumination pattern. Note that
the matrix Y, ; 1506 is for a single pixel i,j (e.g., as down-
sampled from the sensor array 852).

As currently computed, the entries in the intensity matrix
Y, ;1506 depend on the reflectivity p of the simulated surface.
Because different actual surfaces have varying reflectivities,
it would be useful to “normalize” the matrix in a way that
eliminates the reflectivity constant p. In some implementa-
tions, the columns of the intensity matrix Y, ; 1506 are nor-
malized by dividing the elements of each column by the
length (e.g., L, norm) of the column.

FIG. 15B illustrates normalizing the kth column Y, ; (k)
1508 of the matrix 1506. The normalized columnY (k) 1510
is computed from the column 'Y, ,(k) 1508 by d1V1d1ng each
component by the length |Y, =](k)||2j/1 Y Y Y
Performlng the same normalization process for each column
in the intensity matrix y,; 1506 creates a normalized lookup
table Y

Note that after normalization, each column of the lookup
table Y, , has the same normalized length, even though each
column corresponds to a different distance from the sensor
array. However, the distribution of values across the elements
(corresponding to the illumination groups) are different for
different depths (e.g., the normalized first column is different
from the normalized kth column).

Some implementations take advantage of symmetry to
reduce the number of lookup tables. For example, using the
illumination pattern illustrated in FIG. 14, some implemen-
tations reduce the number of lookup tables by a factor of four
(e.g., using rotational symmetry), or reduce the number of
lookup tables by a factor of eight (e.g., using rotational sym-
metry and reflection symmetry).

FIGS. 16A-16D, 17A, and 17B illustrate a method for
creating a depth map, in accordance with some implementa-
tions. The depth map estimates the depth of objects in a scene.
The scene is typically all or part of the field of vision of a
camera 118. The depth map is created for a 2-dimensional
array of pixels. In some implementations, the pixels corre-
spond to the individual image sensors in the image sensor
array 852. In some implementations, each pixel corresponds

25

30

40

45

55

36

to plurality of individual image sensors from the array 852.
For example, in some implementations, each pixel corre-
sponds to a 10x10 square subarray of image sensors.

FIGS. 16A-16D illustrate a sequence of captured images
1606 of an illuminated scene. In each of these figures, the
scene is illuminated by a different group of illuminators 856
of'the camera 118 in accordance with an illumination pattern.
Typically, the illumination pattern used for generating the
lookup tables is used again for creating a depth map of a
scene. That is, the illuminators are grouped into the same
illumination groups, are activated in the same order, and use
the same parameters (e.g., power and length of activation). As
shown in FIGS. 16 A-16D, each illumination group focuses
light on a different portion of the scene. For example, the
illumination group 1602-1 in FIG. 16A creates a brighter
portion 1604-1 at the top of the scene, and the illumination
group 1602-3 in F1G. 16C creates a brighter portion 1604-3 at
the bottom of the scene. Similarly, the illumination group
1602-2 in FIG. 16C creates a brighter portion 1604-2 on the
right side of the scene and the illumination group 1602-4 in
FIG. 16D creates a brighter portion on the left side of the
scene. In the example of FIGS. 16A-16D, there are four
captured images 1606-1, 1606-2, 1606-3, and 1606-4 based
on the four illumination groups 1602. In addition, a fifth
image is captured when none of the illuminators are activated.

As illustrated in FIG. 17A, a vector b ;7 1706 is constructed
for each pixel i,j. The four components of the vector 1706
correspond to the four distinct illumination groups 1602-1,
1602-2,1602-3, and 1602-4. The first component b, -b, 1701
is the light intensity b, at the pixel when the first illumination
group 1602-1 is active minus the light intensity b, at the pixel
from the baseline image. Similarly, the second component
b,-b,1702 is the light intensity b, at the pixel when the second
illumination group 1602-2 is active minus the light intensity
b, at the pixel from the baseline image. The third component
b;-b, 1703 is the light intensity b, at the pixel when the third
illumination group 1602-3 is active minus the baseline light
intensity b, and the fourth component b,-b, 1704 is the light
intensity b, at the pixel when the fourth illumination group
1602-4 is active minus the baseline light intensity b,

For each individual pixel there is a separate lookup table,
which is generated as described above by simulating virtual
surfaces at different depths. The actual depth in the scene at
the pixel is determined by finding the closest matching record
in the lookup table for the pixel. In this example, the vector

b , 1706 and the records in the lookup table (e.g., column
v, ’](k) 1510) are four dimensional vectors. In some imple-
mentations, the closest match is computed by finding the
lookup table record whose “direction” in R* most closely

aligns with the sample vector bi ;1706. This can be deter-
mined by computing the inner product (e.g., dot product) of

the vector bi 5 1706 with each of the records in the lookup
table. In some implementations, the inner product of the

vector b 1706 with the record ¥, ,K) 1510 is <b
ng(k)>W1k(b =bo)+y 2Dy =bo)+y;(bs _b0)+Y4k(b ~by).
The record in the lookup table whose inner product with the
sample vector 1706 is the greatest has an associated depth
(i.e., the simulated depth for which the lookup table record
was created), and this is the estimated depth for the pixel.
Typically, the inner product used is just the dot product, as
illustrated in this example.

The process just described is shown concisely by the for-
mula in FIG. 17B. The lookup table index k is estimated by
computing the dot product of the normalized lookup table

US 9,235,899 B1

37

records Y, &) 1510 with the sample vector Fi ; 1706, and
selecting the index for which the dot product is maximal. The
estimated depth corresponds to the index k.

In the example illustrated in FIGS. 16A-16D, 17A, and
17B, the eight illuminators are grouped into four illumination
groups. However, many other illumination patterns are pos-
sible with the same set of eight illuminators. For example, in
some implementations, the eight illuminators are activated
individually, creating lookup tables with eight rows and vec-
tors with eight components. Some implementations use other
illumination patterns as well. For example, some implemen-
tations use two illuminators at a time, but use each illuminator
in two groups (e.g., a first group consisting of illuminators 1
and 2, a second group consisting of illuminators 2 and 3, a
third group consisting of illuminators 3 and 4, etc.).

FIGS.18A-18E illustrate a process of identifying windows
in a scene that is monitored by a camera 118. FIG. 18A is an
RGB image of a scene (illustrated here in black and white) as
viewed by a surveillance camera 118. Although a human can
easily recognize the windows from the RGB photo, it is more
difficult for a computing device to identify the windows auto-
matically.

In some implementations, the camera 118 has infrared
illuminators 856, which illuminate the scene (typically at
night) and capture one of more IR images to form an IR
intensity image 1802, as illustrated in FIG. 18B. In this
example of an IR intensity image 1802, black represents high
intensity and white represents low intensity. Because win-
dows are specular, the light emitted from the IR illuminators
856 mostly reflects off in other directions rather than back
towards the image sensor array 852 of the camera 118, thus
creating regions of low intensity. As seen in the IR intensity
image 1802, there are various areas 1804, 1806, 1808, and
1810 of low intensity. The low intensity pixels are clustered
together to form contiguous regions. In addition to being
specular, windows typically have a reasonable size (e.g., a
house would not have a window that is one inch wide), and are
generally rectangular. Because of the deformation of the
images, a rectangular window appears as a quadrilateral,
which may not be a rectangle.

Using size and/or quadrilateral analysis of the low intensity
regions in FIG. 18B, the process determines that the lower
regions 1808 and 1810 do not appear to be windows. How-
ever, the upper left low intensity region 1804 is sufficiently
large and fits in a quadrilateral 1812 fairly well, as indicated
in FIG. 18C. Therefore, the region 1804 is designated as a
probable window. Similarly, the upper right low intensity
region 1806 is sufficiently large and fits well into a quadrilat-
eral 1814, so it is identified as a probable window as well.

The same techniques described with respect to windows
can identify other types of objects as well. For example, the
same analysis used for windows can be applied to identity
mirrors or television screens. In some implementations, a
sufficiently large quadrilateral region with low intensity of
reflected IR light is identified as a television rather than a
window based on other information, such as frequent move-
ment within the region. Certain materials have reflectivities
that are intermediate between a specular surface and a surface
with highly diffused reflections. In some implementations,
these materials are identified by a range of expected image
intensity from reflecting the IR light.

In some implementations, quadrilateral fitting measures
the absolute difference between the quadrilateral and the
region, and determines that there is a good fit when the abso-
lute difference is less than a threshold percentage of the area
of'the quadrilateral (e.g., less than 5%, less than 10%, or less

10

15

20

25

30

35

40

45

50

55

60

65

38

than 20%). In some implementations, the process uses more
general polygons rather than quadrilaterals.

Some implementations use motion discontinuity as a factor
in determining whether a low intensity region is a window.
For example, motion of an object on an opposite side of a
window will show up as discontinuous both as the object
enters the field of the window and when the object exits the
field of the window. In some implementations, the presence of
motion discontinuity within a region is used as evidence that
the region is a window, but the absence of motion disconti-
nuity is not used as evidence that the region is not a window.

FIGS. 18D and 18FE are IR images that illustrate two specu-
lar regions that are probable windows. The dark regions 1822
and 1824 in FIG. 18D show up as dark because the IR light
from the illuminators is reflected in a specular way by the
windows. In this example, low intensity regions appear dark,
which is the opposite of the display presented in FIG. 18B.
Other surfaces create diffused reflection, in which the incom-
ing light is reflected in all directions, including back to the
light source. The dark regions 1822 and 1824 in FIG. 18D are
overlaid by quadrilaterals 1832 and 1834 in FIG. 18E. Even
though there is some curvature introduced by the wide angle
lens of the camera, the quadrilaterals 1832 and 1834 fit the
dark regions 1822 and 1824 fairly well, so they are identified
as probable windows.

FIG. 19A provides an outline for computing zone correc-
tion according to some implementations. Initially, a user
defines (1980) a zone of interest in a scene while the camera
118 is in a first position 1988. In some implementations, the
zone is defined using a captured RGB image. In some imple-
mentations, the zone is defined using a captured IR image. In
some implementations, zones must be polygons, but other
implementations allow for broader zone definition. Zones of
interest are commonly used for motion alerts. In some imple-
mentations, a camera 118 is not permanently affixed to a
structure, so the camera 118 may move (intentionally or unin-
tentionally). When the camera moves, the previously defined
zone is no longer valid. Therefore, some implementations
include a zone correction module 928 to compute an adjusted
zone that corresponds to the zone originally defined by the
user.

Some implementations build (1982) a depth map based on
IR images captured while the camera 118 is in the first posi-
tion 1988. In some implementations, the IR images are cap-
tured temporally proximate to the time the zone is defined in
order to ensure that the depth map is built based on the same
field of vision. In some implementations, temporal proximity
is defined to be within 12 hours or within 24 hours. At some
point later, the camera moves (1984). For example, a person
may bump the camera or a person may choose to move the
camera slightly to get better coverage of a room. Later, some
implementations build (1986) a second depth map based on
IR images captured while the camera 118 is in a second
position 1990. Note that the zone correction module 928 does
not necessarily know the camera has moved. In some imple-
mentations, depth maps are created on a periodic basis (e.g.,
once each night, every two days, or once each week).

In some implementations, the zone correction module 928
computes point clouds 930 corresponding to each of the depth
maps, where each point in a point cloud 930 is a three dimen-
sional position in the scene monitored by the camera, as
illustrated below in FIGS. 19B-191. In some implementa-
tions, a predetermined number of points are selected for each
point cloud (e.g., 50, 100, or 1000 points), but in other imple-
mentations, the number of points varies based on the objects
in the monitored scene. In some implementations, the points
for each point cloud are selected based on designated posi-

US 9,235,899 B1

39

tions within the image sensor array (e.g., the intersection of
each tenth row with each tenth column). In some implemen-
tations, the points in the point cloud are selected by down-
sampling from the depth map (i.e., combine multiple points
from the depth map to create an individual point for the point
cloud). In some implementations, points for each point cloud
are selected based on other characteristics, such as proximity
to the camera (e.g., choose points from the depth map that are
close to the camera).

The process of comparing two point clouds is sometimes
referred to as “registration” by those of skill in the art. A
registration process determines how to transform one point
cloud into another point cloud. Some implementations use
one or more iterated closest point (ICP) methods to determine
the transformation. When one of the point clouds can be
transformed to match the other point cloud, the iterative pro-
cess builds the transformation as a sequence of steps that
converge on the final transformation. When the two point
clouds are fundamentally different (e.g., from IR images cap-
tured from different scenes), the iterative process is generally
unable to converge.

After the transformation is determined, the transformation
is applied to the zone defined by the user, thereby creating an
adjusted zone that corresponds to the defined zone. This is
illustrated below in FIGS. 19G and 19H. In some implemen-
tations, the user is prompted to confirm the adjusted zone. The
process of performing zone correction is also described below
with respect to the flowchart 2600 in FIGS. 26A-26C.

FIGS. 19B and 19C provide an example of identifying
movement of a camera 118. In FIG. 19B, certain points are
identified in the scene 1900-B. In some implementations, the
points are identified using a depth map of the scene, as
described in FIGS. 23A-23C below (e.g., selecting certain
points that are closer to the camera 118 than nearby points). In
some implementations, at least some of the points are selected
based on a depth transition and/or color transition (using an
RGB image corresponding to the depth map).

In the scene 1900-B of FIG. 19B, seven points have been
identified: the points 1901 and 1902 that appear to be the left
side corners of a picture frame or window; the point 1903 at
the left side of an apparent table; the point 1904 that appears
to be the bottom of a table leg, and three points 1905, 1906,
and 1907 that are at various locations on what appears to be a
chair. Note that what the points represent is not relevant to the
analysis. Here, the relative positions of the points (horizon-
tally, vertically, and depth from the camera) identify points in
3 dimensional space. In FIG. 19C, seven similar points 1911-
1917 have been identified, and in this case the depths (not
shown) are approximately the same as the corresponding
points 1901-1907 in FIG. 19B. However, the scene 1900-B
appears to have shifted to the left to create the modified scene
1900-C. Rather than concluding that the whole scene has
shifted to the left, the zone correction module 928 determines
that the camera has moved a little to the right. In some imple-
mentations, the points 1901-1907 and the points 1911-1917
are stored as point clouds 930. Although the example of FIGS.
19B and 19C has a one-to-one correspondence between the
points in the two point clouds 930, the zone correction mod-
ule 928 does not require such a perfect correspondence
between the two point clouds 930.

FIGS. 19D and 19E illustrate detecting camera movement
of a different sort. FIG. 19D is the same as FIG. 19B, with the
same seven points 1901-1907, but also identifies the distance
1908 between the two points 1901 and 1902. The seven points
1921-1927 in FIG. 19E correspond to the seven points 1901-
1907 in FIG. 19D, but the depths are now different and the
orientations are a little distorted. For example, the distance

25

40

45

50

60

40

1928 between the points 1921 and 1922 in FIG. 19E appears
larger than the distance 1908 in FIG. 19D. Based on the cloud
of points 1901-1907 in FIG. 19D and the cloud of points
1921-1927 in FIG. 19E, it appears that the scene 1900-D has
rotated toward the left (counterclockwise if viewed from
above) to create the scene 1900-E in FIG. 19E. The zone
correction module 928 determines that the camera has been
rotated a little to the right to create the different scene per-
spective.

As illustrated in FIGS. 19B-19E, the zone correction mod-
ule uses two point clouds 930 that represent the field of vision
of the camera, and determines whether the two point clouds
correspond to slightly different views of the same scene. In
some instances, the camera is moved to a completely different
scene (e.g., a different room), so the two depth maps are quite
different. The zone correction module 930 is generally able to
determine that the point clouds 930 do not correspond.

FIG. 19F illustrates a top view perspective of a camera
movement and how correlating two point clouds is used to
identify the movement. In this illustration, a camera is ini-
tially at a first location 1940, and then is moved a little to a
second location 1950. Because FIG. 19F shows a top view
perspective, differences in height above the floor are not
depicted. However, the techniques described here (and in
FIGS. 26A-26C below) identify movement of the camera in
any direction and/or rotation.

When the camera is at the first location 1940, the field of
vision of the camera is illustrated by the dotted lines 1942 on
the left and 1944 on the right. When the camera is at the
second location 1950, the field of vision of the camera is
illustrated by the dotted lines 1952 on the left and 1954 on the
right. A first depth map is created based on images captured
while the camera 118 is at the first position 1940, and a second
depth map is created based on images captured while the
camera 118 is at the second position 1950. For each of the
depth maps, a point cloud is created that contains a plurality
of points.

In this illustration, the points 1946-1 and 1946-2 are in the
field of vision of the camera at the first position 1940 but not
in the field of vision from the second location 1950. Con-
versely, the points 1956-1, 1956-2, and 1956-3 are in the field
of'vision ofthe camera 118 at the second position 1950 but not
in the field of vision from the first location 1940. The other
points in this illustration are in the shared region 1960.

A first point in this region is identified both as point 1946-3
and as point 1956-4. The two labels for the same point are due
to the presence of the point in both the first and second depth
maps. With respect to the camera 118, the three dimensional
coordinates of the point 1946-3 are different from the 3-di-
mensional coordinates of the point 1956-4, even though the
point has not moved. For example, the depth and horizontal
position of the point 1946-3 (as measured from the first cam-
era location 1940) are different from the depth and horizontal
position of the point 1956-4 (as measured from the second
camera location 1950). If the height of the camera above the
floor at the first and second locations are the same, then the
measured height of the point 1946-3 is the same as the height
of'the point 1956-4. The same analysis applies to the second
labeled point in the region 1960, which is labeled as both
1946-4 and 1956-5. They are the same physical point in the
scene, but have different 3-dimensional coordinates based on
the two views. The same analysis applies to the third labeled
point in the region 1960, which is labeled as both 1946-5
(from the first depth map) and 1956-6 (from the second depth
map).

The first point cloud (containing the points 1946-1-1946-5)
is correlated to the second point cloud (containing the points

US 9,235,899 B1

41

1956-1-1956-6), based on points in the overlap region 1960.
In practice, the points are not literally identical as they are in
this example. As indicated above, an iterative algorithm deter-
mines how to map one of the point clouds to the other.

FIG. 19G shows an IR image of'a monitored scene, with a
zone 1960 identified by a user. This zone 1960 outlines an
entryway to the room from outside, and thus the user has
designated it for motion alerts. At a later time, a second IR
image is captured as illustrated in FIG. 19H. In addition to the
IR images illustrated in FIGS. 19G and 19H, the camera 118
captures sequences of IR images with different sets of IR
illuminators activated contemporaneous with the IR images
in FIGS. 19G and 19H. For example, in some implementa-
tions, when depth mapping images are captured, a first IR
image is captured with no illuminators activated, a plurality of
additional IR images are captured with various subsets of
illuminators activated, and a final IR image is captured with
all of the illuminators activated. (Of course the image capture
is not necessarily in this order.) As described below with
respect to FIGS. 23A-23C, the depth mapping module 878
uses the multiple IR images to build two depth maps. Points
are then selected from each of the depth maps to form point
clouds, and then the two point clouds are registered (aligned)
as described above with respect to FIG. 19A and described
below with respect to FIGS. 26 A-26C.

As shown in FIG. 19H, the uncorrected zone 1962 (using
the same coordinates that were saved for the original zone
1960) no longer covers the entryway that was covered by the
zone 1960 previously. However, using the point clouds cre-
ated from the depth maps, the zone correction module 928
determines the transformation required to correlate the two
views, and applies the transformation to the first zone. The
transformation constructs an adjusted zone 1964, which
again covers the entryway. Even if the adjusted zone 1964 is
not perfect (it should be a little wider to match the entryway),
it is a much better zone for the camera in the new position than
the uncorrected zone 1962.

FIG. 191 provides a summary of the zone-correction pro-
cess according to some implementations. The input 1970
includes a user defined zone, a depth map from an original
camera position, and a depth map from a later camera posi-
tion. The user-defined zone may be created with respect to an
RGB image or an IR image.

When the camera has moved slightly, the process computes
an output 1972, which is an adjusted zone. The adjusted zone
corresponds to the original zone, but accounts for the camera
movement. This is illustrated above FIGS. 19G and 19H.

In some implementations, computing the adjusted zone
includes: (1) converting (1974) the original depth map to a
point cloud with 3D coordinates. In some implementations,
the constructed point cloud has at least 100 points. In some
implementations, the point cloud has fewer or more points.
For example, in some implementations, the point cloud has 50
points or 500 points. In some implementations, the points for
the point cloud are randomly or pseudo-randomly selected
from the depth map. In some implementations, the points in
the point cloud are selected in a regular pattern, such as every
tenth pixel horizontally and vertically. In some implementa-
tions, the points in the point cloud are selected based on
specific characteristics, such as proximity to the camera or
locations where there is significant depth discontinuity (see
FIGS. 20B-20E).

The process builds (1976) a second point cloud from the
second map, which corresponds to the current location of the
camera. The points in the second point cloud are generally
selected in the same way as for the first point cloud.

25

35

40

45

55

42

The process then compares (1978) the two point clouds.
This process is sometimes referred to as point cloud registra-
tion. Some implementations use an iterative process to per-
form point cloud registration. In some implementations, the
process uses an iterated closest point (“ICP’) method. The
registration process determines a transformation that maps
the first point cloud to the second point cloud.

Finally, the process applies (1980) the identified transfor-
mation to the user-selected zone to identify an adjusted zone
based on the new camera location. In some implementations,
the new zone is used immediately. In some implementations,
the user is prompted to confirm the adjusted zone, and the user
may tweak the adjusted zone further.

FIGS. 20A-20K illustrate a process performed by a floor/
wall/ceiling module 946 to identify probable floors, walls,
and ceilings. FIG. 20A is an IR image of a scene. Some
implementations use a coordinate system in which x is mea-
sured horizontally, y is measured vertically, and z represents
the depth into the image from the camera. As illustrated in
FIG. 20G, the depth is measured from the camera.

In some implementations, the floor/wall/ceiling module
926 uses a depth map 876 of the scene, which is constructed
as illustrated in FIGS. 16A-16D, 17A, 17B, and 23A-23C.
The floor/wall/ceiling module 926 uses the depth map 876 to
identify depth discontinuities. In some implementations, the
floor/wall/ceiling module 926 identifies the discontinuities
using an x-direction gradient map G, 940 as illustrated in FI1G.
20B and a y-direction gradient map G, 942 as illustrated in
FIG. 20C. As illustrated in FIG. 20D, some implementations
combine the two gradients G, 940 and G, 942 to form a binary
depth edge map 944, as shown in FIG. 20E. In some imple-
mentations, an edge is identified at a pixel when the total
depth change exceeds a predefined threshold value.

Once the depth discontinuities are identified in the binary
depth edge map 944, the floor/wall/ceiling module 926 iden-
tifies the closed components 946 in the image (i.e., regions
that are enclosed by the edges). These closed components 946
represent the candidates for floors, walls, and ceilings. FIG.
20F shows the closed components 946 corresponding to the
depth map 944 in FIG. 20E. The two largest components
946-1 and 946-2 are good candidates. In some implementa-
tions, closed components 946 that are smaller than a threshold
size are excluded from further analysis. For example, in some
implementations, only the two largest closed components
946-1 and 946-2 are evaluated.

FIG. 20G illustrates how “depth” is measured from the
point of view of the camera 118. This is a side view of the
scene, showing how the depth z correlates to the height y. For
example, incident rays 2020-1 to 2020-4 have depth that
increases as a function of height. This is what would be
expected for a floor. The incident rays 2020-5 to 2020-8 have
a depth that decreases as a function of height. This is what
would be expected for a ceiling.

For each of the closed components 946 that is evaluated,
the floor/wall/ceiling module 926 fits a plane to the points in
the component. In some implementations, the fitted plane has
an equation of the form w,x+w y+w,z=1, where w,, w,, and
w, are constants to be determined, as illustrated in FIG. 20H.
For each closed component, a subset of points in the compo-
nent are used to form a matrix C, as illustrated in FIG. 20I.
The matrix C has a row for each selected point in the compo-
nent, and has three columns corresponding to the x, y, and
z-coordinates of the points. A single closed component 946
may have a large number of points, so implementations typi-
cally take a sampling (e.g., a pseudo-random sample of 20
points or 50 points). The fitted plane 948 should closely
match the data, so a “best fit” can be determined by measuring

US 9,235,899 B1

43

the total error. Some implementations use least squares, and
thus select the values for w,, w,, and w, to minimize the
expression Zi(wxci1+wyci2+wzci3—1)2, as illustrated in FIG.
20J. Some implementations use alternative methods to iden-
tify a “best” plane for a set of data points from a closed
component.

Once a best plane 948 is identified for a component, the
floor/wall/ceiling module 926 evaluates the plane in two
ways. First, is the total error sufficiently small so that the
plane is a good fit? Second, does the orientation of the plane
correspond to floor, wall, or ceiling? Some implementations
specify an error threshold, and designate a closed component
as a probable floor, wall, or ceiling only when the actual error
is less than the threshold. In some implementations, the total
error is normalized based on the number of points in the
sample.

As illustrated in FIG. 20G, a floor should have z increasing
as a function of'y. Using the formula in FIG. 20H, z=-w /w_+
(other terms), so the expression —w,/w, should be positive for
a floor. Similarly, for a ceiling, the expression -w /w, should
be negative. Some implementations also evaluate the magni-
tude of the expression -w /w, to determine whether it is
consistent with data expected for a floor or ceiling. For walls,
the expressions are similar, but use the x-dimension rather
than the y-dimension.

FIG. 20K illustrates that the closed component 946-2 has
been identified as a probable floor region 2022. In some
implementations (not illustrated here), the first closed com-
ponent 946-1 is identified as a wall.

FIGS. 21A-21E illustrate a process for estimating the
height and orientation of a video monitoring camera. Typi-
cally, the height is measured from a floor to the sensor array
852 of the camera 118. The orientation is measured as an
angle with respect to the plane of the floor. In some imple-
mentations, an angle of 0 represents a horizontal orientation
and positive angles represent tilting toward the floor (so that
90 degrees would be pointing straight down). In some imple-
mentations, the “height” is measured relative to a ceiling
rather than a floor. The techniques described herein with
respect to a floor can be applied in the same way to a ceiling,
typically considering the distance below the ceiling as posi-
tive.

InFIG. 21A, the camera 118 is at aheighth, 2112 above the
floor 2110, and some of the floor 2110 is in the field of vision
of the camera 118, as illustrated by the dashed lines 2120. In
FIG.21A, the camera is facing straight forward, so the camera
orientation 2116 matches the plane 2118 parallel to the floor
2110. This produces a tilt angle 6, 2114 of 0 degrees.

FIG. 21B shows the same camera 118 at a different height
and orientation with respect to the floor 2110. A portion of the
floor 2110 is in the field of vision of the camera 118, as
indicated by the dashed lines 2130. The camera 118 is at a
height h, 2122 above the floor 2110, and the camera is tilted
at an angle 0, 2124 of 20 degrees. The angle 0, is measured
between the plane 2128 parallel to the floor and the camera
orientation 2126.

The illustrations in FIGS. 21A and 21B illustrate both the
process of building a dictionary (typically using simulation
with varying heights and tilt angles) as well as determining
the position of an actual camera 118.

FIG. 21C illustrates a dictionary 2150 of training entries
2152, which will be used subsequently to estimate the height
and tilt angle of an actual camera 118. In some implementa-
tions, the entries 2152 are constructed by simulating a camera
118 with various heights and tilt angles with respect to a
simulated floor. In other implementations, the entries are
constructed based on test data with an actual camera 118 at

5

10

15

20

25

30

40

45

50

55

60

65

44

various heights and angles relative to an actual floor. In some
implementations, test data is collected in an environment with
little or no ambient light so that the collected images are based
on just the IR light emitted by the IR illuminators of the
camera.

The dictionary includes a height 2154 and a tilt 2156 for
each entry, and includes data for one or more images captured
based on different sets of IR illuminators emitting light. In
some implementations, a single image is captured while all of
the IR emitters are on. In some implementations, a separate
image is captured for each individual IR emitter, taken while
that IR emitter is on and the remaining IR emitters are off. In
some implementations, the emitters are grouped into pairs, as
illustrated above with respect to FIG. 14. In the example
dictionary 2150 in FIG. 21C, there are four subsets (as in FIG.
14), and separate images 2140, 2142, 2144, and 2146 are
simulated or captured for each of the subsets. When built
using simulation, the estimated intensity at each pixel
depends on the location and orientation of the IR emitters
relative to the image sensor array 852.

In this example dictionary 2150, the second dictionary
entry 2152-2 corresponds to a height of 0.6 meters and a tilt
angle of 10°. In some implementations, positive title angles
indicate the camera is pointing downward. For this second
entry 2152-2, the process simulates or captures four images
L, I, I35, and I, 4, corresponding to each of the four
subsets of IR illuminators. In some implementations, abbre-
viated images are stored. For example, some implementa-
tions store only pixels corresponding to the simulated floor.
Note that the pixels in the images are typically downsampled
from the image sensor array. For example, the image sensor
array may include 4 million individual image sensors,
whereas the saved images may include only 10,000 pixels.

In this example dictionary 2150, there are 250 dictionary
entries 2152, corresponding to heights ranging from 0.6
meters to 3.0 meters (in 0.1 meter increments) and angles
ranging from O degrees to 90 degrees (in 10 degree incre-
ments). In some implementations, there are fewer or more
dictionary entries 2152, depending on the desired granularity,
available storage space, required processing speed, and/or
other considerations.

Whereas a dictionary 2150 is typically creating one time
for a given camera model, the dictionary 2150 can be used
many times to estimate the heights and tilt angles of many
cameras at many different times.

FIG. 21D illustrates a process for determining the height
and tilt angle of an actual camera 118 according to some
implementations. When the dictionary 2150 was created, cer-
tain distinct subsets of the IR illuminators were specified. The
same subsets are used during the estimation process in FIG.
21D. For each of those distinct subsets of illuminators, the
process captures (2160) an IR image (measuring IR light
intensity) while the illuminators in the subset are emitting
light and the IR illuminators not in the subset are not emitting
light. In addition, the process captures (2160) a baseline light
intensity image when none of the IR illuminators are emitting
light. The process then computes (2162) adjusted IR intensity
images for each of the distinct subsets of IR illuminators by
subtracting the baseline intensity image from each of the
other images (subtracting on a pixel-by-pixel basis).

Using the adjusted intensity images, the process identifies
(2164) at least one possible floor region. In some implemen-
tations, identifying a possible floor region uses techniques
illustrated in FIGS. 20A-20K and 25A-25B. If no floor
regions are identified, some implementations automatically
switch to determining the position of the camera relative to
the ceiling. When more than one floor region is identified,

US 9,235,899 B1

45

some implementations estimate a camera position relative to
each of the identified regions, then select a best fit or compute
an aggregated estimate. If there are two or more regions and
the estimates are similar, some implementations compute an
average or weighted average. If there are two or more regions
and the estimates differ substantially, some implementations
select the data for the larger height based on the statistical
reasoning that the higher number is more likely to be correct
(e.g., because the smaller number is from a table).

Some implementations use an iterative algorithm for iden-
tifying a floor region. In some of these implementations, the
entire set of pixels is used as a starting point for the first
iteration, and in each iteration some of the pixels are removed.
In some implementations, the pixels identified for removal in
each iteration are selected based on overall contribution to the
computed distances between the adjusted IR intensity images
and entries in the dictionary. In some implementations, the
process combines floor selection (2164) and classification
(2166) into an iterative loop.

Once a floor region is identified, a classifier estimates
(2166) the (height, tilt) 2168 using the adjusted IR intensity
images, the previously computed dictionary 2150, and limit-
ing the analysis to pixels in the identified floor region. The
operation of the classifier is described in more detail in FIG.
21E.

The classifier identifies a “closest” dictionary entry 2152 to
the adjusted IR intensity images, and estimates the height and
tilt of the camera based on that closest dictionary entry. When
the number of dictionary entries is small (e.g., 100), some
implementations compare the adjusted IR intensity images to
each of the dictionary entries to find the closest one. In some
implementations, the process is able to prune some of the
dictionary entries, thereby comparing the adjusted IR inten-
sity images to a smaller list of dictionary entries.

To identify a closest dictionary entry 2152, some imple-
mentations compute distances between vectors, as illustrated
in FIG. 21E. In this figure, the input is the set of four images
1,, L, 15, and 1, based on the different subsets of illuminators,
and the baseline image I,. The baseline image I, is subtracted
from the others to create the input 2170, which can be viewed
as a long feature vector 2178. In this example, each image has
n pixels, and the elements are arranged in order of the images.
For example, the elementsa,,,...,a,,, ..., a,, correspond
to the pixels of the image I;-I;. In this example, the index r
corresponds to one specific pixel in the identified floor region.
Because there are four distinct images, there are four feature
vector components a, ,, a,,, a3,, a4, 2174 corresponding to the
rth pixel.

FIG. 21E illustrates comparing the feature vector to the
second entry 2152-2 in the dictionary 2150. This second entry
2152-2 includes intensity images (I, ;, 1, », 15 5, I, 4) 2172-2,
which can be represented as a long dictionary entry vector
2180, with components corresponding to the components of
the feature vector 2178.

To compute the distance between the feature vector 2178
and a dictionary entry vector 2180, some implementations
use Euclidean distance based on the relevant vector compo-
nents. The relevant components are the ones associated with
the pixels in the identified floor region. For example, in this
case, the rth pixel is part of the identified floor region, so the
four components corresponding to r are included in the cal-
culation of the distance, as illustrated in formula 2176-2. If
there are four illuminator subsets and 100 pixels in the iden-
tified floor region, then the distance calculation will use 400
components of the vectors. In some implementations, alter-
native distance metrics are used, such as the total absolute

10

15

20

25

30

35

40

45

50

55

60

65

46

difference between vector components la;,~b,, I+ . . . or the
maximum absolute difference between vector components.

In some implementations, the single closest dictionary
entry is used to estimate the camera position. For example, if
the second dictionary entry 2152-2 above is determined to be
closer than all of the other dictionary entries, then the camera
is estimated to be at a height of 0.6 meters and at an angle of
10 degrees (see FIG. 21C). In some implementations, the k
closest dictionary entries are identified for a predefined posi-
tive integer k. These k entries are then used to estimate the
height and tilt angle for the camera. For example, some imple-
mentations compute a weighted average from the k nearest
entries, and weight each entry inversely based on its calcu-
lated distance. Some implementations use alternative tech-
niques, such as other regression algorithms.

FIGS. 22A-22C provide a flowchart of a process 2200,
performed by a computing device, for generating (2202) a
lookup table for use in estimating spatial depth in a visual
scene. The method is performed (2204) ata computing device
(e.g., a scene understanding server 900) having one or more
processors and memory. The memory stores (2204) one or
more programs configured for execution by the one or more
processors.

The process identifies (2206) a plurality of distinct subsets
of IR illuminators 856 of a camera system 118. One example
is illustrated above in FIGS. 16 A-16D, where the camera’s 8
illuminators 856 are grouped into four distinct subsets. One of
skill in the art recognizes that many other alternatives are
possible, such as having one illuminator in each subset, hav-
ing some overlap between subsets, or having different subsets
with different numbers of illuminators.

The camera also has (2208) a 2-dimensional array 852 of
image sensors. The 2 dimensional array 852 is typically laid
out in a rectangular pattern, as illustrated above in FIGS. 10
and 11, but the disclosed process 2200 can be applied regard-
less of the pattern to lay out the image sensors in the array. In
some implementations, the array of image sensors includes
(2210) more than 1,000,000 individual image sensors (e.g.,
2%* sensors). The IR illuminators 856 are (2212) in fixed
locations relative to the array 852 of image sensors, as illus-
trated in FIGS. 10 and 12 above.

The process partitions (2214) the image sensors into a
plurality of pixels. In some implementations, each pixel
includes (2216) a respective single image sensor. In some
implementations, each pixel includes (2218) a respective plu-
rality of image sensors. In some implementations, each pixel
includes (2220) more than 50 respective image sensors. These
are a few ways that implementations partition the individual
image sensors into pixels. Typically the array of image sen-
sors has a high resolution, but sensors are downsampled to
create a more manageable number of pixels (e.g., 10,000
pixels).

A separate lookup table is constructed for each pixel. Each
record in a lookup table corresponds to a depth in front of the
pixel. The accuracy of subsequent depth estimation depends
on the number of depths used to build each lookup table. For
example, if depth data is created for each inch in front of the
pixel, then subsequent depth estimation may be accurate
within an inch. However, if there are only two depth data
points, the accuracy for subsequent estimation will be lim-
ited.

For each pixel, and for each of m distinct depths from the
pixel, the process performs (2222) the following operations.
The process simulates (2224) a virtual surface at the respec-
tive depth. Implementations use various shapes for the virtual
surfaces, such as planar (2226), spherical (2228), parabolic
(2230), or cubic (2232). FIG. 13 illustrates the case of planar

US 9,235,899 B1

47

surfaces. Typically, an implementation uses the same surface
shape for each of the pixels and depths, although potentially
with different parameters. For example, when spherical sur-
faces are used, some implementations simulate a sphere
whose radius is the given depth so that the surfaces at each of
the depths create concentric spheres.

For each pixel and for each of the depths (2222), the pro-
cess also determines (2234) an expected IR light intensity at
the respective pixel based on the respective depth, the shape
of the virtual surface, and which subset of IR illuminators is
emitting IR light. In some implementations, the expected IR
light intensity at the respective pixel is (2236) based on other
characteristics of the IR illuminators of the camera system as
well. For example, in some implementations, the character-
istics include (2238) the lux of the IR illuminators 856. In
some implementations, the characteristics include (2240) ori-
entation of the IR illuminators relative to the sensor array.
This is illustrated above in FIG. 12, with illuminator 856-1
oriented at an angle 1210. In some implementations, the
characteristics include (2242) location of the IR illuminators
relative to the sensor array.

For each pixel and for each of the depths (2222), the pro-
cess also forms (2244) an intensity vector using the expected
IR light intensity for each of the distinct subsets. This is
illustrated in FIG. 17A above. Typically a baseline value is
subtracted from each of the values, where the baseline value
is measured when none of the illuminators are emitting light.
The process then normalizes (2246) the intensity vector. In
some implementations, the process normalizes each intensity
vector by determining (2248) a respective magnitude of the
intensity vector and dividing each component of the intensity
vector by the respective magnitude.

The process constructs (2250) a lookup table for each pixel
using the normalized vectors corresponding to the pixel. Each
lookup table associates (2252) each respective normalized
vector in the table with the respective depth of the respective
simulated surface. Some implementations use this lookup
table as described below with respect to the process 2300
illustrated in FIGS. 23A-23C.

FIGS. 23A-23C provide a flowchart of a process 2300,
performed by a computing device, for creating (2302) a depth
map of a scene. The method is performed (2304) at a com-
puting device (e.g., a scene understanding server 900) having
one or more processors and memory. The memory stores
(2304) one or more programs configured for execution by the
one or more processors. In some implementations, the com-
puting device is (2306) a server distinct from a camera sys-
tem. In other implementations, the computing device is
(2308) included in the camera system.

In some implementations, the process 2300 detects (2310)
a trigger event. In some implementations, creating the depth
map of the first scene is (2310) in response to detecting the
trigger event. In some implementations, the first scene
includes (2312) a first object positioned at a first location
within the first scene and the process 2300 detects (2314) the
first object positioned at a second location within the first
scene, where the second location is distinct from the first
location. The movement of the first object triggers the build-
ing of the depth map. In some implementations, the trigger
eventis (2316) a power outage (e.g., build or rebuild the depth
map when the computing device reboots).

In some implementations, the process 2300 switches
(2318) the mode of operation of the camera system when
building the depth map. For example, some implementations
switch (2318) from a first mode of the camera system to a
second mode of the camera system, including deactivating the
first mode and activating the second mode. In some imple-

5

10

15

20

25

30

35

40

45

50

55

60

65

48

mentations, the array of image sensors has (2320) an associ-
ated first pixel gain curve when the first mode is activated, and
the array of image sensors has (2320) an associated second
pixel gain curve when the second mode is activated.

For each of a plurality of distinct subsets of IR illuminators
of'the camera system, the process 2300 performs (2322) a set
of operations. In some implementations, one or more of the
subsets of the IR illuminators consists (2324) of a single IR
illuminator. In some implementations, the plurality of IR
illuminators are orientated (2326) at a plurality of distinct
angles relative to the array of image sensors. In some imple-
mentations, each of the distinct subsets of IR illuminators
comprises (2328) two adjacent IR illuminators, and the dis-
tinct subsets of IR illuminators are (2328) non-overlapping.
One of skill in the art recognizes that various groupings,
arrangements, and/or configurations may be used for the IR
illuminators.

The process 2300 receives (2330) a captured IR image of a
first scene taken by a 2-dimensional array of image sensors of
the camera system while the respective subset of IR illumi-
nators are emitting IR light and the IR illuminators not in the
respective subset are not emitting IR light. This occurs for
each distinct subset of IR illuminators. The image sensors are
partitioned (2332) into a plurality of pixels. As noted above
with respect to the process 2200 in FIG. 22A, the partitioning
of image sensors into pixels can occur in various ways
depending on the implementation. In some implementations,
the process 2300 receives (2334) a baseline IR image of the
scene captured by the array of sensors while none of the IR
illuminators are emitting IR light. Some implementations
subtract the light intensity from this baseline image from the
light intensity in each of the other captured IR images, as
illustrated above in FIG. 17A.

For each of the pixels, the process 2300 performs (2336)
several operations, including using (2338) the captured IR
images to form a respective vector of light intensity at the
respective pixel. In some implementations, the respective
vector for each pixel has (2340) a plurality of components.
Each ofthe components corresponds (2340) to a respective IR
light intensity for the respective pixel for a respective cap-
tured IR image. This is illustrated above in FIG. 17A, where

the vector Fi ;1706 has four components, corresponding to
the four illumination groups 1602 illustrated in FIGS. 16 A-
16D. In some implementations, forming each respective vec-
tor of light intensity at a respective pixel comprises (2342)
subtracting a light intensity at the pixel in the baseline IR
image from the light intensity at the pixel in each of the
captured IR images, as illustrated in FIG. 17A. In this way, the
vector measures the additional light that is received at the
image sensor array 852 based on reflections of light emitted
from each of the illumination groups.

For each pixel (2336), the process 2300 then estimates
(2344) a depth in the first scene at the respective pixel by
looking up the respective vector in a respective lookup table.
In some implementations, the process looks up (2346) the
respective vector in the respective lookup table by computing
(2346) an inner product of the respective vector with records
in the lookup table. One of skill in the art recognizes that in a
vector space an inner product can be used to measure the
extent to which a pair of vectors are pointing in the same
direction. In some instances, the inner product is (2350) an
ordinary dot product. In some implementations, the process
2300 computes (2348) the inner product of the respective
vector with each respective record in the respective lookup
table. In some implementations, fewer than all of the inner
products are computed for the lookup table (e.g., based on

US 9,235,899 B1

49

optimization techniques, such as recognizing that certain
records in the lookup table would produce smaller inner prod-
ucts than some inner products that are already computed).

In some implementations, the process 2300 determines
(2352) the depth in the first scene at the pixel as the depth
corresponding to a record in the lookup table whose inner
product with the respective vector is greatest among the com-
puted inner products for the respective vector. This is illus-
trated above with respect to FIG. 17B.

In some implementations, the respective lookup table is
generated (2354) during a calibration process at the camera
118. In some implementations, the calibration process
includes (2356) simulating a virtual planar surface at a plu-
rality of respective depths in the first scene. In some imple-
mentations, the calibration process includes (2358), for each
pixel and each respective depth, determining an expected
reflected light intensity. In some implementations, each
respective lookup table is downloaded (2362) to the camera
system 118 from a remote server during an initialization
process prior to creating the depth map.

In some implementations, each respective lookup table
includes (2360) a plurality of normalized light intensity vec-
tors, where each normalized light intensity vector corre-
sponds to a respective depth in the first scene. This is illus-
trated above in FIGS. 13, 14, 15A, and 15B.

Although lookup tables have been identified separately for
each pixel, one of skill in the art recognizes that the separate
logical lookup tables are not necessarily stored as separate
files or databases. For example, some implementations store
all of the lookup tables as a single physical table in a relational
database or as a single physical file on a file server. In some
implementations, the totality of lookup tables is stored as a
small number of distinct files. As described above, implemen-
tations generate and use the lookup tables on various devices
depending on the capabilities of the camera system 118,
available network bandwidth, and other resources. For
example, for camera systems with limited processing power
and/or storage, some implementations build and use the
lookup tables at a scene understanding server 900. The cam-
era system 118 captures the IR images (e.g., baseline image
plus additional images with different sets of illuminators on),
and transmits them to the server 900. The server then con-
structs the depth map. In some implementations, the lookup
tables are constructed at the server 900 based on the depth
simulations and knowledge of the camera configuration, and
then downloaded to the camera. In some of these implemen-
tations, the camera 118 uses the lookup tables itself to build a
depth map.

FIGS. 24A-24C provide a flowchart of a process 2400,
performed by a computing device, for classifying (2402)
objects in a scene. The method is performed (2404) at a
computing device (e.g., a scene understanding server 900)
having one or more processors and memory. The memory
stores (2404) one or more programs configured for execution
by the one or more processors. In some implementations, the
computing device is (2406) a server distinct from a camera
system. In other implementations, the computing device is
(2408) included in the camera system.

The process receives (2410) a captured IR image of a scene
taken by a 2-dimensional image sensor array of a camera
system while one or more IR illuminators of the camera
system are emitting IR light, thereby forming an IR intensity
map of the scene with a respective intensity value determined
for each pixel of the IR image. Typically, the IR image is
captured at night, so most of the intensity is based on reflec-
tion of the light from the IR illuminators. Typical surfaces
disperse light in all directions, so some of the emitted light is

5

10

20

25

30

35

40

45

50

55

60

65

50

reflected back to the image sensor array. For a specular sur-
face, however, such as a window, mirror, or some television
screens, the incoming light at a surface is reflected off prima-
rily in one direction, with the angle of incidence equal to the
angle of reflection. A specular region therefore typically has
low intensity in the IR intensity map.

The pixels in the IR intensity map can correspond to the
image sensors in the array 852 in various ways, as previously
illustrated with respect to FIG. 22A (boxes 2214-2220). In
some implementations, each pixel of the IR image corre-
sponds (2412) to a unique respective image sensor in the
image sensor array. In some implementations, the pixels of
the IR image form (2414) a partition of the image sensors in
the image sensor array. In some of these implementations, at
least one pixel corresponds (2416) to a plurality of image
sensors in the image sensor array.

Typically, the camera system 118 includes (2418) a plural-
ity of IR illuminators, as illustrated above in FIGS. 10 and 12.
In some implementations, the process 2400 constructs the IR
intensity map from multiple distinct IR images. For example,
in some implementations, the process receives (2420) a
respective IR sub-image of the scene for each of a plurality of
distinct subsets of IR illuminators of the camera system. Each
sub-image is captured (2420) while illuminators in a respec-
tive subset are emitting IR light and the IR illuminators not in
the respective subset are not emitting IR light. The process
2400 computes (2422) an average of the intensity values atthe
pixel in each of the sub-images to determine the intensity
value for the pixel.

The process uses (2424) the IR intensity map to identify a
plurality of pixels whose corresponding intensity values are
within a predefined intensity range. In some implementa-
tions, the predefined intensity range is (2426) all intensity
values below a threshold value. This is the intensity range
typically used when the goal is to identify windows. Some
implementations use other ranges to identify other specific
materials.

The process 2400 clusters (2428) the identified plurality of
pixels (i.e., the pixels identified based on the intensity range)
into one or more regions that are substantially contiguous.
This is illustrated above with respect to FIG. 18B. Some
implementations use other factors in the clustering process as
well. For example, some implementations set a threshold size
for a region. Small regions of low intensity are either com-
bined with other nearby regions or ignored. In some imple-
mentations, clustering the identified plurality of pixels into
one or more regions uses (2430) a depth map that was con-
structed using the image sensor array. For example, when
trying to identify windows, a window should be continuous.
A single region with two or more significantly disparate
depths is not likely to be a window. In some implementations,
clustering the identified plurality of pixels into one or more
regions uses (2432) an RGB image of the scene captured
using the image sensor array. For example, evaluating the
color distribution of a region can identify some regions that
are unlikely to be windows (e.g., the presence of certain
colors or the number of distinct colors).

The process 2400 determines (2434) that a first region of
the one or more regions corresponds to a specific material
based, at least in part, on the intensity values of the pixels in
the first region. In some implementations, determining that a
first region of the one or more regions corresponds to a spe-
cific material includes (2436) determining that the first region
is substantially a quadrilateral. This is illustrated by the quad-
rilaterals 1812 and 1814 in FIG. 18C above, and the quadri-
laterals 1832 and 1834 in FIG. 18E. In some implementa-
tions, the first region is (2438) substantially a quadrilateral

US 9,235,899 B1

51

when a total absolute difference in area between the first
region and the quadrilateral is less than a threshold percentage
of'the quadrilateral’s area (e.g., less that 10% of the area of the
quadrilateral). In some implementations, the specific material
is (2440) glass and the first region is determined to correspond
to a window in the scene. In some implementations, the
region is identified as a probable window candidate, which is
subsequently confirmed either by a user or other independent
criteria.

Once a region has been classified, the process 2400 stores
(2442) information in the memory that identifies the region.
The information can be stored in various ways. In some
implementations, the process 2400 stores coordinates for the
region, such as coordinates of a centroid, or coordinates of a
subset of points along the boundary. In some implementa-
tions, the process 2400 creates a two-dimensional scene map
corresponding to the pixels, and specifies a value (e.g., a
number or a character) to identify the object/material/func-
tion for each pixel. For example, in some implementations, a
value of 0 indicates no information, a value of 1 indicates a
probable window, 2 indicates a probable floor, 3 indicates a
probable wall, and 4 indicates a probable ceiling. Usage of a
scene map is illustrated in FIG. 30 below. Identification of
floors, walls, and ceilings is described above with respect to
FIGS. 20A-20K and below with respect to FIGS. 25A-25B.
Some implementations use characters instead of numbers,
such as a “W” to indicate a probable window, an “F” to
indicate a probable floor, and a blank space if there is no
information about a possible object at the pixel.

In some implementations, the process 2400 receives
(2444) a video stream of the scene from the camera system
and reviews (2446) the video stream to detect movement in
the scene. Movement in the scene can be used to identify
possible intruders in a home or other potential problems. In
some implementations, the first region is excluded (2446)
from movement detection. For example, if the first region is
identified as a window, movement in the window region may
be movement on the other side of the window (e.g., outside),
and thus not suitable for a motion alert. In another example,
the first region is a television set, and thus “motion” in the
region is typically based on displayed television images
rather than real motion at the scene. In some implementa-
tions, the process 2400 generates (2448) a motion alert when
there is motion detected at the scene outside of the first region.

FIGS. 25A-25B provide a flowchart of a process 2500,
performed by a computing device, for identifying (2502)
large planar objects in scenes. The method is performed
(2504) at a computing device (e.g., a scene understanding
server 900) having one or more processors and memory. The
memory stores (2504) one or more programs configured for
execution by the one or more processors. In some implemen-
tations, the computing device is (2506) a server distinct from
a camera system. In other implementations, the computing
device is (2508) included in the camera system.

The process 2500 receives (2510) a plurality of captured IR
images of a scene taken by a 2-dimensional array of image
sensors of a camera system. Each IR image is captured (2512)
when illuminators in a distinct subset of IR illuminators of the
camera system 118 are emitting light. In some implementa-
tions, the image sensors are partitioned (2514) into a plurality
of pixels. As described above with respect to FIG. 22A (e.g.,
boxes 2214-2220), implementations group the image sensors
into pixels in various ways.

The process 2500 constructs (2516) a depth map of a scene
using the plurality of IR images. Some implementations use a
process as described in FIGS. 23A-23C (process 2300) to
construct the depth map. In some implementations, for each

25

30

40

45

52

pixel the process 2500 performs (2518) a set of operations. In
some implementations, the set of operations includes using
(2520) the captured IR images to form a respective vector of
light intensity at the respective pixel. In some implementa-
tions, the set of operations includes estimating (2522) a depth
in the first scene at the respective pixel using the respective
vector and a respective lookup table. In some implementa-
tions, lookup tables are constructed using a process as
described in FIGS. 22A-22C (process 2200).

The process 2500 uses (2524) the depth map to compute a
binary depth edge map 944 for the scene. The binary depth
edge map 944 identifies (2524) which points in the depth map
comprise depth discontinuities. This is illustrated in FIGS.
20B-20D above. The process 2500 then identifies (2526) a
plurality of contiguous components based on the binary depth
edge map. This is illustrated in FIG. 20E above. Depth dis-
continuities create boundaries between components.

The process then determines (2528) that a first component
of the plurality of contiguous components represents a large
planar surface in the scene. This determination involves a few
steps. A first step is to fit (2530) a plane to the points in the first
component. In some implementations, the fitting uses least
squares to find the best plane for the data in the component.
Some implementations use other techniques to identify a
“best” plane for the data, such as minimizing the sum of
absolute differences between a hypothetical plan and the
points in the component. Implementations typically use a
sampling of data points from a component to fit the best plane.
For example, some implementations use 50 or 100 sample
data points from a component.

In making the determination that the first component rep-
resents a large planar surface, the process also confirms that
the “best” plane is actually a good plane for the data. In some
implementations, the process 2500 determines (2540) that the
plane fitting residual error is less than a predefined threshold.
In some implementations, the plane fitting residual error is the
sum of the absolute differences between the plane and the
sample points in the component. In some implementations,
the plane fitting residual error is the sum of the squares of the
differences between the sample points and the plane, or the
square root of the sum of the squares. In some implementa-
tions, the plane fitting residual error is the maximum absolute
difference between the sample points and the plane. Some
implementations use two or more techniques to confirm that
the residual error is small (e.g., the maximum absolute error is
less than a first threshold and the sum of the absolute errors is
less than a second threshold).

Oncethe plane is fitted and it is determined that the residual
error is sufficiently small, the first component is identified as
a large planar surface. The process 2500 then analyzes the
plane to determine whether the surface is likely to be a floor,
a ceiling, or a wall. To make this determination, some imple-
mentations determine (2532) the orientation of the plane.
This is illustrated above with respect to FIG. 20G. When the
orientation of the plane is upwards, the process 2500 deter-
mines (2534) that the plane is probably a floor. When the
orientation of the plane is downwards, the process 2500 deter-
mines (2536) that the plane is probably a ceiling. When the
orientation of the plane is horizontal, the process 2500 deter-
mines (2538) that the plane is probably a wall.

Some implementations use other criteria as well in making
the determination that a component represents a large planar
surface. For example, some implementations require the
component to have a minimum threshold area to be classified
as a probable floor, wall, or ceiling.

FIGS. 26A-26C provide a flowchart of a process 2600,
performed by a computing device, for recomputing (2602)

US 9,235,899 B1

53

zones in scenes based on physical movement of acamera. The
method is performed (2604) at a computing device (e.g., a
scene understanding server 900) having one or more proces-
sors and memory. The memory stores (2604) one or more
programs configured for execution by the one or more pro-
cessors. In some implementations, the computing device is
(2606) a server distinct from a camera system. In other imple-
mentations, the computing device is (2608) included in the
camera system.

The process 2600 receives (2610) a first RGB image of a
scene taken by a 2-dimensional array of image sensors of a
camera system at a first time. The RGB image identifies what
is in the field of vision of the camera. The process also
receives (2612) a first plurality of distinct IR images of the
scene taken by the array of image sensors temporally proxi-
mate to the first time. In general, the temporal proximity
ensures that the field of vision of the camera while capturing
the IR images is substantially the same as the field of vision of
the camera while capturing the RGB image. Commonly, the
RGB image is captured during daylight hours, whereas the IR
images are captured at night. In some implementations, tem-
poral proximity means within 24 hours or 12 hours. Each of
the IR images is taken (2614) while a different subset of IR
illuminators of the camera system is emitting light.

The process 2600 uses (2616) the first plurality of IR
images to construct a first depth map of the scene, where the
first depth map indicates a respective depth in the scene at a
plurality of pixels. Some implementations use a process like
the depth mapping process 2300 described with respect to
FIGS. 23A-23C to construct the first depth map. The pixels of
the depth map correspond to the image sensors of the array. In
some implementations, each pixel corresponds (2618) to one
or more image sensors. In some implementations, each pixel
corresponds to a single image sensor. In some implementa-
tions, the process 2600 partitions (2620) the image sensors
into a plurality of pixels. In some implementations, the pro-
cess 2600 forms (2622) a respective vector of the received IR
images for each pixel. For each pixel, the process 2600 esti-
mates (2624) a depth in the scene at the respective pixel by
looking up the respective vector in a respective lookup table.
Some implementations use lookup tables constructed as
described above with respect to the process 2200 in FIGS.
22A-22C.

A user designates (2626) a zone within the RGB image. In
some implementations, the designated zone is a region of
interest, such as a region with special monitoring. In some
implementations, the special monitoring consists of exclud-
ing the region from monitoring movement. In some imple-
mentations, an alert is triggered when there is movement in a
designated zone. In some implementations, the zone corre-
sponds (2626) to a contiguous plurality of pixels. In some
implementations, the zone is (2628) a quadrilateral. In some
implementations, the zone is a polygon. In alternative imple-
mentations, the user designates a zone within an IR image
instead of within an RGB image.

The process 2600 receives (2630) a second plurality of
distinct IR images of the scene taken by the array of image
sensors at a second time that is after the first time. In some
implementations, each of the IR images in the second plural-
ity is captured (2632) while a different subset of IR illumina-
tors of the camera system is emitting light. Typically, the
subsets of IR illuminators used to capture the second plurality
of IR images are the same as the subsets of IR illuminators
used to capture the first plurality of illuminators.

The process 2600 then uses (2634) the second plurality of
IR images to construct a second depth map of the scene. The
process 2600 typically uses the same steps for building the

25

30

40

45

50

55

54

second depth map as used for building the first depth map,
which was described above with respect to boxes 2618-2624
in FIG. 26A.

The process 2600 then determines (2636) physical move-
ment of the camera system based on the first and second depth
maps. In many cases, if there has been no movement of the
camera, the second depth map is substantially the same as the
first depth map. However, in some cases, objects in the scene
itself change, such as placing a new item of furniture in the
monitored area, placing new artwork on a wall, or even accu-
mulated clutter on a floor.

In some instances, the determined physical movement is
(2638) an angular rotation. In some implementations, the
determined physical movement is (2640) a lateral displace-
ment. For example, the camera may be bumped a little to the
left or the right on a shelf. Note that lateral displacement can
be a horizontal movement, a vertical movement, and/or a
movement forward or backward. In some implementations, a
“lateral displacement™ is defined as any movement of the
camera 118 in which the camera continues to point in the
same direction (e.g., due east). In many cases, if the camera
118 is bumped or nudged, the physical movement includes
(2642) both an angular rotation and a lateral displacement.

In some implementations, the process 2600 identifies
(2644) a plurality of points in the first depth map and a
corresponding plurality of points in the second depth map.
The process 2600 then determines (2646) a respective dis-
placement for each of the identified points between the first
and second depth maps. By combining the displacements for
aplurality of distinct points, the process 2600 determines the
overall movement of the camera 118.

In some implementations, determining the movement of
the camera uses point clouds. The process 2600 forms (2648)
afirst point cloud using a first plurality of points from the first
depth map, and forms (2650) a second point cloud using a
second plurality of points from the second depth map. The
process then computes (2652) a minimal transformation that
aligns the first point cloud with the second point cloud. One of
skill in the art recognizes that correlating two point clouds can
be performed in various ways. Based on the point cloud
transformation, the process 2600 identifies the motion of the
camera 118 that would produce the point cloud transforma-
tion.

Based on the determined physical movement of the camera
system 118, the process 2600 translates (2654) the zone in the
first RGB image into an adjusted zone. When the zone origi-
nally designated by the user is a quadrilateral, the adjusted
zone is (2656) also a quadrilateral. However, because of the
transformation, in some instances, a first edge of the quadri-
lateral has (2658) a length that is different from a correspond-
ing second edge of the second quadrilateral.

In some implementations, the process 2600 receives
(2660) a second RGB image of the scene taken by the array of
image sensors of the camera system temporally proximate to
the second time. In some implementations, the process 2600
correlates (2662) the adjusted zone to a set of pixels from the
second RGB image. This can be helpful to a user who wants
to view the zones.

FIGS. 27A-27D provide a flowchart of a process 2700,
performed by a computing device, for estimating (2702) the
height and tilt angle of a camera system having a 2-dimen-
sional array of image sensors and a plurality of IR illumina-
tors in fixed locations relative to the array of image sensors.
The height and tilt angle are measured with respect to a floor
near the location of the camera system. The method is per-
formed (2704) at a computing device (e.g., a scene under-
standing server 900) having one or more processors and

US 9,235,899 B1

55

memory. The memory stores (2704) one or more programs
configured for execution by the one or more processors. In
some implementations, the computing device is (2706) a
server distinct from the camera system. In other implemen-
tations, the computing device is (2708) included in the cam-
era system.

The process 2700 identifies (2710) a plurality of distinct
subsets of the IR illuminators. Subsequently, each of the
distinct subsets of illuminators are activated one subset at a
time, and the images captured with different illumination
enables determination of the camera height and tilt angle. In
some implementations, each of the distinct subsets of the IR
illuminators comprises (2712) two adjacent IR illuminators,
and the distinct subsets of the IR illuminators are non-over-
lapping. In some implementations, each individual illumina-
tor is one of the distinct subsets. For example, if a camera
system has eight illuminators, some implementations have
eight distinct subsets, consisting of each individual illumina-
tor. In some implementations there is overlap between the
distinct subsets. For example, in a camera system with eight
illuminators, some implementations have eight distinct sub-
sets corresponding to each possible pair of adjacent illumi-
nators. One of skill in the art recognizes that many other
selections of subsets of IR illuminators are possible.

The process 2700 also partitions (2714) the image sensors
in the array into a plurality of pixels. In some implementa-
tions, each pixel comprises (2716) a single image sensor. In
other implementations, each pixel comprises (2718) a plural-
ity of image sensors. Typically, the image sensor array 852
has a large number of image sensors (e.g., a million or more).
Implementations commonly downsample the images, com-
bining multiple sensors into a single virtual pixel. In some
implementations, each pixel includes about 100 image sen-
sors (e.g., a 10x10 contiguous square). In some implementa-
tions, each pixel corresponds to the same number of image
Sensors.

Before computing an actual camera position, implementa-
tions build a dictionary (also referred to as a training set). An
example dictionary 2150 is provided in FIG. 21C above.
Typically, the dictionary is constructed once, and used many
times. The dictionary is constructed based on characteristics
of a specific camera, but there are generally many cameras
that can use the same dictionary (e.g., a million instances of a
single camera model can all use the same dictionary as long as
the cameras are substantially identical). The dictionary con-
sists of a plurality of entries, each corresponding to a (height,
tilt angle) pair. The height and tilt angle represent the rela-
tionship of the camera (i.e., the image sensor array 852 of the
camera) relative to a floor near where the camera is located. In
some implementations, all of the (height, tilt angle) pairs are
unique, but in other implementations, two or more dictionary
entries have the same height and tilt angle. In some imple-
mentations, the dictionary entries are constructed based on
simulation (e.g., simulating a specific height and tilt angle
above a floor, and simulating illumination from the identified
subsets of illuminators). In other implementations, the dictio-
nary entries are constructed based on experimental data (e.g.,
placing the camera at various heights and tilts and capturing
images based on activating the various identified subsets of
illuminators).

For each of a plurality of heights and tilt angles, the process
2700 constructs (2720) a dictionary entry that corresponds to
the camera system 118 having the respective height and tilt
angle above a floor. The respective dictionary entry includes
(2722) respective IR light intensity values for pixels in images
corresponding to activating individually each of the distinct
subsets of the IR illuminators. For example, in some imple-

30

40

45

50

60

56

mentations with 15,000 pixels and four subsets of illumina-
tors, each dictionary entry has a light intensity value for each
of the 60,000 pixel/subset combinations plus the height and
tilt angle (e.g., a vector with 60,002 entries). In some imple-
mentations, the dictionary entries only include pixels that
correspond to the simulated floor. For example, if there are
15,000 pixels for the entire sensor array, the simulated floor
may occupy 3000 pixels, thus creating dictionary entries with
12,002 components (12,000 components corresponding to
the pixel/subset combinations, and two components for the
height and tilt angle). Some implementations have about 100
dictionary entries (e.g., with height values of 0.0 meters, 0.3
m, 0.6 m, and tilt angles of -40°, =30°, -20°, . . .). Some
implementations include more entries to provide greater
accuracy (e.g., height values every 0.1 meter and angles every
5 degrees).

In some implementations, the constructed dictionary
entries are (2723) based on simulating the camera, the floor,
and the images, and computing expected IR light intensity
values for pixels in the simulated images. In some implemen-
tations, each expected IR light intensity value is (2724) based
on characteristics of the IR illuminators. As noted previously,
the characteristics may include (2724) one or more of: lux,
orientation of the IR illuminators relative to the array of
image sensors, and location of the IR illuminators relative to
the array of image sensors. In some implementations, a
respective dictionary entry for a respective height and respec-
tive tilt angle is (2725) based on measuring IR light intensity
values of actual images captured by the camera having the
respective height and respective tilt angle with respect to an
actual floor.

In some implementations, the process 2700 normalizes
(2726) each of the dictionary entries. In some implementa-
tions, this accounts for different surface reflectivity. In some
implementations, the process 2700 normalizes (2728) each
dictionary entry by determining (2728) a respective total
magnitude of the light intensity features in the respective
dictionary entry and dividing (2728) each component of the
respective dictionary entry by the respective total magnitude.
For example, with a dictionary entry having 12,002 elements,
compute the total magnitude of the first 12,000 entries (cor-
responding to light intensity at pixels) and divide each of
those 12,000 entries by the total magnitude. If the light inten-
sity features are labeled x,, X,, . . . , X;5000, then in some

implementations the total magnitude is V=,_, 2°%°(x,)*.

In some implementations, the dictionary entries are con-
structed at a computing device that is distinct from the camera
system, then downloaded (2730) to the camera system from
the computing device during an initialization process. In
some implementations, the subsequent determination of
height and tilt angle is calculated at the camera system 118,
even when the building of the dictionary is performed at a
separate computing device (e.g., a scene understanding server
900).

For each of the plurality of distinct subsets of the IR illu-
minators, the process 2700 receives (2732) a captured IR
image of a scene taken by the array of image sensors while the
respective subset of the IR illuminators are emitting IR light
and the IR illuminators not in the respective subset are not
emitting IR light. In some implementations, the process 2700
receives (2734) a baseline IR image of the scene captured by
the array of image sensors while none of the IR illuminators
are emitting IR light, and subtracts (2736) a light intensity at
each pixel of the baseline IR image from the light intensity at
the corresponding pixel of each of the other captured IR

US 9,235,899 B1

57

images. This can provide a better estimate of the light inten-
sity due to the IR illuminators.

The process uses (2738) at least one of the captured IR
images to identify a floor region corresponding to a floor in
the scene. Some implementations use the techniques illus-
trated above in FIGS. 20A-20K and 25A-25B to identify a
floor region. For example, in some implementations the pro-
cess 2700 constructs (2740) a depth map of the scene using
the captured IR images. In some implementations, the pro-
cess 2700 then identifies (2742) a region bounded by depth
discontinuities. This is illustrated above in FIGS. 20B-20F. In
some implementations, the process 2700 also determines
(2744) that the region is substantially planar and facing
upwards.

The process 2700 then forms (2746) a feature vector
including pixels from the captured IR images in the identified
floor region. This is illustrated in FIG. 21E. Typically, the
components of the feature vector are arranged in the same
order as the components of the dictionary entries.

The process then estimates (2748) a camera height and
camera tilt angle relative to the floor by comparing (2748) the
feature vector to the dictionary entries. In some implementa-
tions, the process 2700 normalizes (2750) the feature vector
and the dictionary entries prior to computing the distances.

In some implementations, the process 2700 computes
(2752) a respective distance between the feature vector and
respective dictionary entries, and selects (2756) a first dictio-
nary entry whose corresponding computed distance is less
than the other computed distances. In some implementations,
computing the distance between a feature vector and respec-
tive dictionary entries comprises (2754) computing a Euclid-
ean distance that uses only vector components corresponding
to pixels in the identified floor region. This is illustrated in
FIG. 21E. For example, the actual floor may have some
objects on it, such as furniture or toys. The floor identification
process typically excludes these objects because they are not
part of the planar surface. Because the process 2700 deter-
mines the height and angle relative to the floor, only pixels
that correspond to the floor region are relevant. The process
2700 estimates (2758) the camera height and tilt angle to be
the height and tilt angle associated with the first dictionary
entry.

Some implementations expand or modify this basic pro-
cess in various ways. In some implementations, the process
2700 identifies a ceiling rather than a floor, and measures the
“height” and tilt angle relative to the ceiling. As noted above
in FIGS. 20A-20K and 25A-25B, the processes described
with respect to a floor can be used for a ceiling as well. In this
case, the dictionary entries are constructed relative to the
ceiling. In some implementations, the position of the camera
is computed both with respect to a floor and with respectto a
ceiling. A side effect of this dual calculation is to estimate the
height of the room where the camera is located.

As noted above, the data for the dictionary entries can be
constructed by simulation or by experiments with an actual
camera. When formed by experimentation, some implemen-
tations capture a baseline image for each camera position, and
subtract the baseline from the other captured images with
each of the subsets of illuminators activated. Alternatively,
the experiments are performed in a room with no ambient
light so that each captured image represents only light coming
originally from the activated illuminators. The size of the
dictionary can be selected based on the desired accuracy.

In some instances, multiple “floor” regions are identified.
In some of these instances, the multiple regions are different
portions of the same floor. In other instances, one or more of
the regions may be tables and one or more regions may be an

35

40

45

58

actual floor. Some implementations estimate the height and
tilt angle based on each of the identified regions, then com-
pare the multiple results. If they are all approximately the
same, some implementations estimate the height and tilt
based on all of them (e.g., by averaging the values, taking the
values associated with the largest region, or choosing the first
one). When the heights are substantially different, some
implementations take the larger estimate, guessing that the
smaller height estimate is based on a table or other planar
object above the floor. Note that the process is only an esti-
mate. If the camera is sitting on a table and the floor is not in
the field of vision of the camera, the estimated height will be
the height above the table.

Some implementations use interpolation to provide a finer
estimate. For example, in some instances the feature vector
has equally small distances from two dictionary entries. In
some implementations, the estimated height and tilt angle are
based on averaging these two closest entries. In some imple-
mentations, finding the matching dictionary entry uses a near-
est neighbor algorithm. In some implementations, only the
single nearest neighbor is used. In some implementations, the
k nearest neighbors are used for a fixed small positive integer
k, and a weighted average of these neighbors is used to com-
pute the height and tilt angle of the camera. For example, in
some implementations, the k nearest entries are selected, and
each is weighted based on the inverse of its distance from the
feature vector.

FIG. 28 provides an overview of some of the processes
described herein, which utilize control of individual illumi-
nators (e.g., LEDs) from a video monitoring camera to collect
and calculate useful information. Not shown in the overview
is preliminary processing that is typically performed at a
server, such as building lookup tables (e.g., as illustrated in
FIGS. 13, 14, 15A, 15B, and 22A-22C) or constructing a
dictionary (e.g., as illustrated in FIGS. 21A-21C and 27A-
27D).

Inthe data acquisition phase 2802, the camera 118 captures
(2806) 1R images while controlling which IR illuminators are
on. In some implementations, the images are captured at
night, and may occur multiple times each night (e.g., every
hour). In some implementations, the camera 118 receives a
command from the video server system 508 or scene under-
standing server 900 to collect the images. Before taking the
images, the camera typically locks auto exposure so that all of
the captured images are taken with the same parameter set-
tings. FIG. 14 illustrates an example where the illuminators
are grouped into adjacent pairs. In general, an additional IR
image is taken with none of the illuminators active in order to
determine the ambient light.

For cameras with substantial processing power and
memory, subsequent processing may be performed at the
camera. However, the data is commonly transmitted to a
separate server for the data processing phase 2804, which
commonly occurs at a video server system 508 or a scene
understanding server 900. In some implementations, the data
is transmitted from the camera to an external computing
device in a native format (e.g., five IR images). In some
implementations, some processing occurs on the camera
before it is transmitted. For example, in some implementa-
tions, the images are downsampled at the camera, which
reduces the amount of data transmitted. In some implemen-
tations, the captured background image is subtracted from the
other images, so the data transmitted corresponds to light
from the IR illuminators, and the background light is already
canceled out. In some implementations, the data is transmit-
ted as a single long array of data, such as the feature vector
2178 in F1G. 21E. In some implementations, the components

US 9,235,899 B1

59

of'the transmitted data are arranged differently, such as group-
ing together the data for each pixel (e.g., placing a,,, a,,, a5;,
and a,, from the feature vector 2178 together).

In some implementations, the scene understanding server
900 includes a depth mapping module 878, which computes
(2808) a 3-D depth map of the scene in the field of vision of
the camera. Constructing a depth map is described above with
respect to FIGS. 16A-16D, 17A, 17B, and 23A-23C. The
depth map information is passed on to various scene under-
standing processes 2810, such as object classifiers 922, a
camera pose estimator 932, or a zone correction module 928.
These processes compute or determine various information
about the scene. Both the depth information and the scene
information are passed on to the computer vision engine
2812. In some implementations, the computer vision engine
2812 uses the information to provide better alerts. For
example, the computer vision engine 2812 can reduce the
number of false security alerts by excluding certain regions or
by performing automatic zone correction when a camera is
moved slightly. In some implementations, this data facilitates
motion tracking and detection of humans. The data process-
ing phase is described in more detail with respect to FIG. 29.

FIG. 29 illustrates the interrelationships between some of
the scene understanding processes, including the inputs and
outputs for each of the processes. The first process 2902
builds a depth map for the scene in the field of vision of the
camera. The depth mapping module 878 is also referred to as
a “depth data generator,” as shown in the depth mapping
process 2902. The inputs to the depth mapping process are the
IR images, as discussed above. The depth mapping module
878 creates several outputs, including the depth map 2912,
which is also referred to as a depth image. This provides a 3D
structure of the scene, as described above with respect to
FIGS. 16A-16D, 17A, 17B, and 23A-23C. In some imple-
mentations, the depth mapping module 878 also creates a
depth edge map 2914, which is also referred to as a depth edge
image. This is illustrated above with respect to FIGS. 20B,
20C, and 20D. In some implementations, the depth mapping
module 878 computes an active IR brightness image 2916,
which represents only reflections of light from the active IR
illuminators, and not the environmental ambient light. In
some implementations, this is performed by subtracting the
baseline intensity values (when no illuminators are on) from
each of the other images. In some implementations, the depth
mapping module 878 computes a signal-to-background
image 2918, which identifies the ratio of the active brightness
(from illuminator light) to the passive brightness (from the
environment). When there is too much background light, it
can reduce the confidence in the calculated results.

The second process 2904 identifies large planar regions,
such as floors, walls, and ceilings. This process is described
above with respect to FIGS. 20A-20K and 25A-25B. The
floor/wall/ceiling module 926 is also referred to as the planar
support detection engine. The floor/wall/ceiling module 926
uses as inputs the depth map 2912 and the depth edge map
2914, and identifies regions that likely correspond to floors,
walls, or ceilings. In some implementations, the floor/wall/
ceiling module 926 labels the pixels of a scene image (either
an RGB image or an IR image) as probable floors, walls, or
ceilings. This is illustrated below in FIG. 30.

The third process 2906 performs zone correction, as
described above with respect to FIGS. 19A-191 and 26 A-26C.
The zone correction module 928 uses depth maps constructed
at two different times, as well as a user-defined zone. When
the zone has changed slightly, the zone correction module 928
recommends an updated zone, which is typically presented to
the user for verification. In some implementations, if the

5

10

15

20

25

30

35

40

45

50

55

60

65

60

camera has moved significantly (e.g., to another room), the
zone correction module recommends removing the zone.

The fourth process 2908 identifies specular regions in a
scene, which generally correspond to windows, televisions,
or sliding glass doors. This process is described above with
respect to FIGS. 18A-18E and 24A-24C. The window detec-
tion module 924 is sometimes referred to as a specular region
identification engine. The window detection module 924 uses
the depth map 2912 and the active IR brightness image 2916
to identify regions that are probable windows, and typically
uses other information to make such a confirmation. For
example, in some implementations, the window detection
module 924 uses the size of the region (e.g., is it too big or too
small to be a likely window). In some implementations, the
window detection module 924 uses the shape of the region
based on the empirical fact that most windows are rectangu-
lar. Based on some distorting effects, an object that is rectan-
gular generally appears as a quadrilateral in an image, and
thus some implementations do quadrilateral fitting for win-
dows.

The information provided by the scene understanding
server can be used in various ways to reduce false motion
alerts. For example, an identified specular region (identified
as a possible window), may be a television set. In some
implementations, a rectangular specular region that includes
lots of motion is identified as a probable television. When a
television is identified, “movement” within the television
region that would otherwise create a false motion alert can be
avoided. In some implementations, false motion alerts from
ceilings can be avoided as well. Typically, “motion” on a
ceiling is caused by lights, such as headlights from cars, and
should not trigger a motion alert.

Some implementations are able to identify other character-
istics of the camera location as well. For example, some
implementations determine whether the camera is inside or
outside (e.g., based on the presence of a ceiling). When a
camera is inside, some implementations determine whether
the room is a small room or a large room. These characteris-
tics can help determine when to create motion alerts. For
example, when a camera is outside, there are many regions
where motion would be expected (e.g., plants or trees flowing
with the wind). Therefore, motion detection may be limited to
very specific areas and/or set at a high threshold for what
triggers a motion event. In some implementations, the infor-
mation about the camera environment (e.g., floors and win-
dows) is used to make recommendations on where to place
the camera and/or to recommend zones for more detailed
monitoring. For example, in FIGS. 18D and 18E, the camera
appears to be sitting on or close to a floor. In some implemen-
tations, the system recommends placing the camera at a
higher location.

FIG. 30 illustrates conceptually how the information is
provided by the scene understanding server 900 in some
implementations. The image pixels are arranged in a two
dimensional grid 3002. The grid 3002 includes many indi-
vidual grid cells 3006, such as the grid cell 3006-1. Within
each grid cell 3006, codes are used to provide information
about what is estimated to be in that cell. The legend 3004
gives some example cell codes that use single characters.
Some implementations use numeric codes, or use bit posi-
tions within an encoded number to specify what is in the cell.
The grid corresponds to the selected pixels, which are typi-
cally downsampled from the individual image sensors from
the sensor array 852. In some implementations, the pixels
form a 94x162 grid. In some implementations, the pixels are
substantially square, but in other implementations, the pixels

US 9,235,899 B1

61

are rectangular, as depicted in the example in FIG. 30 (e.g.,
each pixel may correspond to an 8x12 group of image sen-
sors).

As illustrated in FIG. 30, some of the grid cells have infor-
mation that identifies the type of object believed to be in the
cell. For example, the upper right grid cell 3006-2 is encoded
with a “C” to indicate that it is believed to be part of a ceiling.
In this example, there are several cells in a contiguous region
3008 that are believed to be part of a ceiling. Although the
region 3008 is identified in the figure, implementations typi-
cally do not store a region definition with the grid 3002.
Instead, the encoded individual cells, such as the cell 3006-2
provide the information.

Similarly, a group of cells including the cell 3006-3 are
encoded with a “W,” indicating that the cells are part of a
probable window. The region 3010 includes these cells. Also,
on the left is a group 3012 of cells that include the cell 3006-4,
which is identified as a probable wall. In some implementa-
tions, an individual cell can be labeled with at most object
type, but in other implementations, each cell can have two or
more designations. For example, the dark region 1822 in FIG.
18D appears to be a window, but it is also part of a door. In
some implementations, the designations of “door” and “win-
dow” are compatible, so both are included. In some imple-
mentations, when there are two or more designations (which
are potentially incompatible), each of the designations has an
associated probability.

Although the grid 3002 in FIG. 30 shows only probable
designations of objects in the monitored scene, some imple-
mentations provide additional information with the grid cells.
For example, in some implementations, each pixel has an
associated IR and/or RGB image value. In some implemen-
tations, each grid cell 3006 includes the estimated depth from
the computed depth map 876. In some implementations, the
grid cells encode a computed depth edge map 944 as well,
such as the depth map 944 in FI1G. 20E. In general, whatever
features are computed for individual pixels are stored in the
grid 3002.

Some implementations provide zone correction, as illus-
trated in FIGS. 19A-191 and 26 A-26C above. Some imple-
mentations address camera movement more generally, recog-
nizing that there are both small moves (e.g., a bump) and large
moves (e.g., taking the camera to a different room). In a small
move, the camera sees substantially the same field of vision,
as illustrated in FIG. 19F. In this case, an activity zone can
generally be adjusted. In a large move, the camera sees a
substantially different field of vision. The previously defined
activity zone is now irrelevant to the current field of vision, so
the zone should be discarded. Whether a small move or a large
move, some implementations issue a camera move alert so
that the user can take appropriate action. Some implementa-
tions use push notifications to alert the user of a camera move
event, but other implementations use pull notifications,
allowing the user to receive a camera move event only when
requested. Some implementations support both push and pull
notifications, and select the type based on the importance. For
example, some implementations use push notifications when
there is a detected motion event (e.g., a possible intruder), but
use pull notifications for camera move events. Some imple-
mentations track the history of camera move events, and
provide the user with access to that history. In some imple-
mentations, each camera move event has additional data that
is stored. For example, some implementations store the model
of the camera, the software or firmware version, the existing
activity zones, an identifier for the camera when a household

10

15

20

25

30

35

40

45

50

55

60

65

62

has more than one camera, one or more timestamps to indi-
cate when the camera moved, the recommended action, and
SO O1.

FIGS. 31A and 31B illustrate a camera that has moved
slightly. Between the time of the image in FIG. 31A and the
time ofthe image in FIG. 31B, the field of vision of the camera
appears to have moved a little to the right and alittle up. Using
the techniques described above in FIGS. 19A-191 and 26 A-
26C, arecommended zone correction is determined. An alert
or notification is then sent to the user, as illustrated in FIGS.
31C and 31D. In some instances, the notification is sent as an
email. As indicated in FIG. 31C, the email message body
indicates that the camera has moved, and identifies the zone.
In this example, the zone has been previously labeled “Door-
way From Kitchen” by the user. The notification message also
includes the image in FIG. 31D. Superimposed on the image
are the current zone 3102 (solid outline) and the recom-
mended adjusted zone 3104 (dashed outline). In some imple-
mentations, the zones are outlined in color to make them more
visible, using a color such as neon green. The message makes
it easy for the user to accept the recommended zone adjust-
ment (e.g., by clicking a link or button in the message).

FIG. 31E illustrates a large move. Previously, the zone
3120 was identified as the “Garage Door,” whereas it now
appears to be in a family room or office. Using point cloud
registration as described above with respect to FIGS. 19A-
191, the zone correction module 928 determines that the cur-
rent point cloud is not a transformed version of the previous
point cloud (the one having the garage door). Therefore, a
notification message 3124 is sent to the user (e.g., by email,
text message, or instant message). The message 3124 con-
cisely points out the issue, and provides a simple way for the
user to resolve the problem (e.g., delete the zone). The mes-
sage 3124 also includes an image 3122 representing the cur-
rent field of vision of the camera with the current zone 3120
identified. In this way the user can easily see the problem and
resolve it quickly. If the user wants to create one or more
replacement zones, the user can go into the application and
create new zones.

In situations in which the systems discussed here collect
personal information about users, or may make use of per-
sonal information, the users may be provided with an oppor-
tunity to control whether programs or features collect user
information (e.g., information about a user’s social network,
social actions or activities, profession, a user’s preferences, or
auser’s current location), or to control whether and/or how to
receive content from the content server that may be more
relevant to the user. In addition, certain data may be treated in
one or more ways before it is stored or used, so that Personally
Identifiable Information (“PII”) is removed. For example, a
user’s identity may be treated so thatno PII can be determined
for the user, or a user’s geographic location may be general-
ized where location information is obtained (such as to a city,
ZIP code, or state level), so that a particular location of a user
cannot be determined. Thus, the user may have control over
how information is collected about the user and used by a
content server.

It is to be appreciated that one or more implementations
disclosed hereinabove is particularly advantageous for appli-
cation in the home monitoring context, for which there are
particular combinations of desirable goals including low cost
hardware, very low device power (especially for battery-only
devices), low device heating, nonintrusive device operation,
ease of device installation and configuration, tolerance to
intermittent network connectivity, low-maintenance or main-
tenance-free device operation, long device lifetimes, the abil-
ity to operate in a variety of different lighting conditions, and

US 9,235,899 B1

63

so forth, the home monitoring context further involving par-
ticular sets of expected target characteristics and/or con-
straints for which the preferred implementations may be par-
ticularly effective, such as the statistically prominent
presence of certain target types (humans, pets, houseplants,
ceilings, floors, furniture, doors, windows, household fix-
tures, various household items, etc.), the fact that the moni-
toring device is usually stationary relative to the monitored
space, the fact that certain target types have certain expected
ranges of sizes and characteristics (e.g., humans and pets have
certain sizes and any movement is usually parallel to a floor or
stairway; floors-ceilings-walls are also usually of certain size
or height ranges and are stationary; doors-windows rotate or
slide within expected ranges; furniture is usually stationary
and has certain expected sizes), and so forth. However, it is to
be appreciated that the scope of the present teachings is not so
limited, with other implementations being applicable for the
monitoring of other types of structures (e.g., multi-unit apart-
ment buildings, hotels, retail stores, office buildings, indus-
trial buildings) and/or to the monitoring of any other indoor or
outdoor facility or space. It is to be still further appreciated
that, while facility or space monitoring represents one par-
ticular advantageous application, the scope of the present
teachings can further be applicable to any field in which
automated machine characterizations of stationary or moving
objects, facilities, environments, persons, animals, or vessels,
are desired based on optical, ultraviolet, or infrared electro-
magnetic reflection or emission characteristics.

It will also be understood that, although the terms first,
second, etc. are, in some instances, used herein to describe
various elements, these elements should not be limited by
these terms. These terms are only used to distinguish one
element from another. For example, a first user interface
could be termed a second user interface, and, similarly, a
second user interface could be termed a first user interface,
without departing from the scope of the various described
implementations. The first user interface and the second user
interface are both user interfaces, but they are not the same
user interface.

The terminology used in the description of the various
described implementations herein is for the purpose of
describing particular implementations only and is not
intended to be limiting. As used in the description of the
various described implementations and the appended claims,
the singular forms “a,” “an,” and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will also be understood that the term “and/or” as
used herein refers to and encompasses any and all possible
combinations of one or more of the associated listed items. It
will be further understood that the terms “includes,” “includ-
ing,” “comprises,” and/or “comprising,” when used in this
specification, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other fea-
tures, integers, steps, operations, elements, components, and/
or groups thereof.

Although some of various drawings illustrate a number of
logical stages in a particular order, stages that are not order
dependent may be reordered and other stages may be com-
bined or broken out. While some reordering or other group-
ings are specifically mentioned, others will be obvious to
those of ordinary skill in the art, so the ordering and groupings
presented herein are not an exhaustive list of alternatives.
Moreover, it should be recognized that the stages could be
implemented in hardware, firmware, software or any combi-
nation thereof.

15

40

45

64

The foregoing description, for purpose of explanation, has
been described with reference to specific implementations.
However, the illustrative discussions above are not intended
to be exhaustive or to limit the scope of the claims to the
precise forms disclosed. Many modifications and variations
are possible in view of the above teachings. The implemen-
tations were chosen in order to best explain the principles
underlying the claims and their practical applications, to
thereby enable others skilled in the art to best use the imple-
mentations with various modifications as are suited to the
particular uses contemplated.

What is claimed is:

1. A method of generating a lookup table for use in esti-
mating spatial depth in a visual scene, comprising:

at a server having one or more processors, and memory

storing one or more programs configured for execution
by the one or more processors:

identifying a plurality of distinct subsets of IR illuminators

of a camera system that has a 2-dimensional array of
image sensors and a plurality of IR illuminators in fixed
locations relative to the array of image sensors;
partitioning the image sensors into a plurality of pixels;
for each pixel, and for each of m distinct depths from the
respective pixel:
simulating a virtual surface at the respective depth;
for each of the plurality of distinct subsets of IR illumi-
nators, determining an expected IR light intensity at
the respective pixel based on the respective depth and
based on only the respective subset of IR illuminators
emitting IR light;
forming an intensity vector using the expected IR light
intensities for each of the distinct subsets; and
normalizing the intensity vector; and

for each pixel, constructing a lookup table comprising the

normalized vectors corresponding to the pixel, wherein
the lookup table associates each respective normalized
vector with the respective depth of the respective simu-
lated surface.

2. The method of claim 1, wherein the expected IR light
intensity at the respective pixel is based on characteristics of
the IR illuminators of the camera system.

3. The method of claim 2, wherein the characteristics
include lux.

4. The method of claim 2, wherein the characteristics
include orientation of the IR illuminators relative to the array
of' image sensors.

5. The method of claim 2, wherein the characteristics
include location of the IR illuminators relative to the array of
image sensors.

6. The method of claim 1, wherein the virtual surface at the
respective depth is a planar surface.

7. The method of claim 1, wherein the virtual surface at the
respective depth is a spherical surface.

8. The method of claim 1, wherein the virtual surface at the
respective depth is a parabolic surface.

9. The method of claim 1, wherein the virtual surface at the
respective depth is a cubic surface.

10. The method of claim 1, wherein normalizing each
intensity vector comprises determining a respective magni-
tude of the intensity vector and dividing each component of
the intensity vector by the respective magnitude.

11. The method of claim 1, wherein each pixel comprises a
respective single image sensor.

12. The method of claim 1, wherein each pixel comprises a
respective plurality of image sensors.

13. The method of claim 1, wherein each pixel comprises
more than fifty respective image sensors.

US 9,235,899 B1

65

14. The method of claim 1, wherein the array of image
sensors comprises more than one million image sensors.

15. A server system, comprising:

one or More processors;

memory; and

one or more programs stored in the memory configured for

execution by the one or more processors, the one or more
programs comprising instructions for:

identifying a plurality of distinct subsets of IR illuminators

of a camera system that has a 2-dimensional array of
image sensors and a plurality of IR illuminators in fixed
locations relative to the array of image sensors;
partitioning the image sensors into a plurality of pixels;
for each pixel, and for each of m distinct depths from the
respective pixel:
simulating a virtual surface at the respective depth;
for each of the plurality of distinct subsets of IR illumi-
nators, determining an expected IR light intensity at
the respective pixel based on the respective depth and
based on only the respective subset of IR illuminators
emitting IR light;
forming an intensity vector using the expected IR light
intensities for each of the distinct subsets; and
normalizing the intensity vector; and

for each pixel, constructing a lookup table comprising the

normalized vectors corresponding to the pixel, wherein
the lookup table associates each respective normalized
vector with the respective depth of the respective simu-
lated surface.

16. The server system of claim 15, wherein the expected IR
light intensity at the respective pixel is based on characteris-
tics of the IR illuminators of the camera system, and wherein
the characteristics include orientation of the IR illuminators
relative to the array of image sensors.

10

15

20

25

30

66

17. The server system of claim 15, wherein the virtual
surface at the respective depth is a planar surface.

18. The server system of claim 15, wherein normalizing
each intensity vector comprises determining a respective
magnitude of the intensity vector and dividing each compo-
nent of the intensity vector by the respective magnitude.

19. The server system of claim 15, wherein each pixel
comprises a respective plurality of image sensors.

20. A non-transitory computer readable storage medium
storing one or more programs configured for execution by a
server system having one or more processors and memory, the
one or more programs comprising instructions for:

identifying a plurality of distinct subsets of IR illuminators

of a camera system that has a 2-dimensional array of
image sensors and a plurality of IR illuminators in fixed
locations relative to the array of image sensors;
partitioning the image sensors into a plurality of pixels;
for each pixel, and for each of m distinct depths from the
respective pixel:
simulating a virtual surface at the respective depth;
for each of the plurality of distinct subsets of IR illumi-
nators, determining an expected IR light intensity at
the respective pixel based on the respective depth and
based on only the respective subset of IR illuminators
emitting IR light;
forming an intensity vector using the expected IR light
intensities for each of the distinct subsets; and
normalizing the intensity vector; and

for each pixel, constructing a lookup table comprising the

normalized vectors corresponding to the pixel, wherein
the lookup table associates each respective normalized
vector with the respective depth of the respective simu-
lated surface.

